Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana
Summary Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco‐engineering facilitate the elimination of nonmammalian‐type glycosylation and introduction of missing pathways for customized N‐glycan formation. However, some therapeuti...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2017-02, Vol.15 (2), p.197-206 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 2 |
container_start_page | 197 |
container_title | Plant biotechnology journal |
container_volume | 15 |
creator | Shin, Yun‐Ji Castilho, Alexandra Dicker, Martina Sádio, Flavio Vavra, Ulrike Grünwald‐Gruber, Clemens Kwon, Tae‐Ho Altmann, Friedrich Steinkellner, Herta Strasser, Richard |
description | Summary
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco‐engineering facilitate the elimination of nonmammalian‐type glycosylation and introduction of missing pathways for customized N‐glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N‐glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N‐glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β‐hexosaminidases (HEXOs) that account for the formation of paucimannosidic N‐glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO‐deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3‐fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N‐glycans on plant‐produced human α1‐antitrypsin. |
doi_str_mv | 10.1111/pbi.12602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053887138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-e812904d7869498fff48ebb74a7a5ae9d98c0a60dbb2081ffc01325cebfea39a3</originalsourceid><addsrcrecordid>eNp1kUFuFDEQRS0EIiGw4ALIEhuymMR2293uDVKIAkSKAkKwtqrd5YyjbruxpyGz4wichYNwCE6ChwkjQMIbV6leff3SJ-QxZ0e8vOOp80dc1EzcIftc1s2iqZW4u6ul3CMPcr5mTPBa1ffJnmik2Gzuk5t32M8WezrBbP0IIcTse2_p5Y8vX6-GtYVAXUwjrHwMtFvTPE9Twpw3bXQUaJ7Qelc2vn8rK0u8iRlGH3wPGalLcaSX3saVhwC0w7BalmmpH5J7DoaMj27_A_Lh5dn709eLizevzk9PLhZWykosUHPRMtk3um5lq51zUmPXNRIaUIBt32rLoGZ91wmmuXOW8Uooi51DqFqoDsjzre40dyP2tjhIMJgplWPT2kTw5u9J8EtzFT8ZJVSrNCsCz24FUvw4Y16Z0WeLwwAB45yNYKrSuuGVLujTf9DrOKdQzjOiXCGkYrou1OGWsinmnNDtzHBmNqmYkqf5lWdhn_zpfkf-DrAAx1vgsx9w_X8l8_bF-VbyJ58ir8I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290245086</pqid></control><display><type>article</type><title>Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shin, Yun‐Ji ; Castilho, Alexandra ; Dicker, Martina ; Sádio, Flavio ; Vavra, Ulrike ; Grünwald‐Gruber, Clemens ; Kwon, Tae‐Ho ; Altmann, Friedrich ; Steinkellner, Herta ; Strasser, Richard</creator><creatorcontrib>Shin, Yun‐Ji ; Castilho, Alexandra ; Dicker, Martina ; Sádio, Flavio ; Vavra, Ulrike ; Grünwald‐Gruber, Clemens ; Kwon, Tae‐Ho ; Altmann, Friedrich ; Steinkellner, Herta ; Strasser, Richard</creatorcontrib><description>Summary
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco‐engineering facilitate the elimination of nonmammalian‐type glycosylation and introduction of missing pathways for customized N‐glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N‐glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N‐glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β‐hexosaminidases (HEXOs) that account for the formation of paucimannosidic N‐glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO‐deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3‐fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N‐glycans on plant‐produced human α1‐antitrypsin.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12602</identifier><identifier>PMID: 27421111</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>a1-antitrypsin ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Base Sequence ; beta-N-acetylhexosaminidase ; beta-N-Acetylhexosaminidases - antagonists & inhibitors ; Cell Membrane - metabolism ; Cloning ; Deoxyribonucleic acid ; DNA ; drugs ; Enzymes ; Fucose ; Gene expression ; Genes, Plant ; Glycan ; Glycoproteins ; Glycosylation ; glyco‐engineering ; Heterogeneity ; hosts ; humans ; Immunoglobulin G ; Immunoglobulins ; leaves ; Localization ; mutants ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana benthamiana ; N‐glycosylation ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - metabolism ; plant‐made pharmaceuticals ; plasma membrane ; Polysaccharides ; Polysaccharides - biosynthesis ; Polysaccharides - metabolism ; Protein expression ; Proteins ; recombinant proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - metabolism ; Residues ; RNA interference ; RNA-mediated interference ; vacuoles ; Vacuoles - metabolism ; α1‐antitrypsin</subject><ispartof>Plant biotechnology journal, 2017-02, Vol.15 (2), p.197-206</ispartof><rights>2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-e812904d7869498fff48ebb74a7a5ae9d98c0a60dbb2081ffc01325cebfea39a3</citedby><cites>FETCH-LOGICAL-c4432-e812904d7869498fff48ebb74a7a5ae9d98c0a60dbb2081ffc01325cebfea39a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12602$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12602$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27421111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Yun‐Ji</creatorcontrib><creatorcontrib>Castilho, Alexandra</creatorcontrib><creatorcontrib>Dicker, Martina</creatorcontrib><creatorcontrib>Sádio, Flavio</creatorcontrib><creatorcontrib>Vavra, Ulrike</creatorcontrib><creatorcontrib>Grünwald‐Gruber, Clemens</creatorcontrib><creatorcontrib>Kwon, Tae‐Ho</creatorcontrib><creatorcontrib>Altmann, Friedrich</creatorcontrib><creatorcontrib>Steinkellner, Herta</creatorcontrib><creatorcontrib>Strasser, Richard</creatorcontrib><title>Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco‐engineering facilitate the elimination of nonmammalian‐type glycosylation and introduction of missing pathways for customized N‐glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N‐glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N‐glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β‐hexosaminidases (HEXOs) that account for the formation of paucimannosidic N‐glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO‐deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3‐fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N‐glycans on plant‐produced human α1‐antitrypsin.</description><subject>a1-antitrypsin</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>beta-N-acetylhexosaminidase</subject><subject>beta-N-Acetylhexosaminidases - antagonists & inhibitors</subject><subject>Cell Membrane - metabolism</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>drugs</subject><subject>Enzymes</subject><subject>Fucose</subject><subject>Gene expression</subject><subject>Genes, Plant</subject><subject>Glycan</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>glyco‐engineering</subject><subject>Heterogeneity</subject><subject>hosts</subject><subject>humans</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulins</subject><subject>leaves</subject><subject>Localization</subject><subject>mutants</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana benthamiana</subject><subject>N‐glycosylation</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>plant‐made pharmaceuticals</subject><subject>plasma membrane</subject><subject>Polysaccharides</subject><subject>Polysaccharides - biosynthesis</subject><subject>Polysaccharides - metabolism</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>recombinant proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - metabolism</subject><subject>Residues</subject><subject>RNA interference</subject><subject>RNA-mediated interference</subject><subject>vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>α1‐antitrypsin</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUFuFDEQRS0EIiGw4ALIEhuymMR2293uDVKIAkSKAkKwtqrd5YyjbruxpyGz4wichYNwCE6ChwkjQMIbV6leff3SJ-QxZ0e8vOOp80dc1EzcIftc1s2iqZW4u6ul3CMPcr5mTPBa1ffJnmik2Gzuk5t32M8WezrBbP0IIcTse2_p5Y8vX6-GtYVAXUwjrHwMtFvTPE9Twpw3bXQUaJ7Qelc2vn8rK0u8iRlGH3wPGalLcaSX3saVhwC0w7BalmmpH5J7DoaMj27_A_Lh5dn709eLizevzk9PLhZWykosUHPRMtk3um5lq51zUmPXNRIaUIBt32rLoGZ91wmmuXOW8Uooi51DqFqoDsjzre40dyP2tjhIMJgplWPT2kTw5u9J8EtzFT8ZJVSrNCsCz24FUvw4Y16Z0WeLwwAB45yNYKrSuuGVLujTf9DrOKdQzjOiXCGkYrou1OGWsinmnNDtzHBmNqmYkqf5lWdhn_zpfkf-DrAAx1vgsx9w_X8l8_bF-VbyJ58ir8I</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Shin, Yun‐Ji</creator><creator>Castilho, Alexandra</creator><creator>Dicker, Martina</creator><creator>Sádio, Flavio</creator><creator>Vavra, Ulrike</creator><creator>Grünwald‐Gruber, Clemens</creator><creator>Kwon, Tae‐Ho</creator><creator>Altmann, Friedrich</creator><creator>Steinkellner, Herta</creator><creator>Strasser, Richard</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana</title><author>Shin, Yun‐Ji ; Castilho, Alexandra ; Dicker, Martina ; Sádio, Flavio ; Vavra, Ulrike ; Grünwald‐Gruber, Clemens ; Kwon, Tae‐Ho ; Altmann, Friedrich ; Steinkellner, Herta ; Strasser, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-e812904d7869498fff48ebb74a7a5ae9d98c0a60dbb2081ffc01325cebfea39a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>a1-antitrypsin</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>beta-N-acetylhexosaminidase</topic><topic>beta-N-Acetylhexosaminidases - antagonists & inhibitors</topic><topic>Cell Membrane - metabolism</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>drugs</topic><topic>Enzymes</topic><topic>Fucose</topic><topic>Gene expression</topic><topic>Genes, Plant</topic><topic>Glycan</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>glyco‐engineering</topic><topic>Heterogeneity</topic><topic>hosts</topic><topic>humans</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulins</topic><topic>leaves</topic><topic>Localization</topic><topic>mutants</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana benthamiana</topic><topic>N‐glycosylation</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>plant‐made pharmaceuticals</topic><topic>plasma membrane</topic><topic>Polysaccharides</topic><topic>Polysaccharides - biosynthesis</topic><topic>Polysaccharides - metabolism</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>recombinant proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - metabolism</topic><topic>Residues</topic><topic>RNA interference</topic><topic>RNA-mediated interference</topic><topic>vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>α1‐antitrypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yun‐Ji</creatorcontrib><creatorcontrib>Castilho, Alexandra</creatorcontrib><creatorcontrib>Dicker, Martina</creatorcontrib><creatorcontrib>Sádio, Flavio</creatorcontrib><creatorcontrib>Vavra, Ulrike</creatorcontrib><creatorcontrib>Grünwald‐Gruber, Clemens</creatorcontrib><creatorcontrib>Kwon, Tae‐Ho</creatorcontrib><creatorcontrib>Altmann, Friedrich</creatorcontrib><creatorcontrib>Steinkellner, Herta</creatorcontrib><creatorcontrib>Strasser, Richard</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yun‐Ji</au><au>Castilho, Alexandra</au><au>Dicker, Martina</au><au>Sádio, Flavio</au><au>Vavra, Ulrike</au><au>Grünwald‐Gruber, Clemens</au><au>Kwon, Tae‐Ho</au><au>Altmann, Friedrich</au><au>Steinkellner, Herta</au><au>Strasser, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2017-02</date><risdate>2017</risdate><volume>15</volume><issue>2</issue><spage>197</spage><epage>206</epage><pages>197-206</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco‐engineering facilitate the elimination of nonmammalian‐type glycosylation and introduction of missing pathways for customized N‐glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N‐glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N‐glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, β‐hexosaminidases (HEXOs) that account for the formation of paucimannosidic N‐glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO‐deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3‐fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N‐glycans on plant‐produced human α1‐antitrypsin.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>27421111</pmid><doi>10.1111/pbi.12602</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2017-02, Vol.15 (2), p.197-206 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5259580 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | a1-antitrypsin Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis thaliana Base Sequence beta-N-acetylhexosaminidase beta-N-Acetylhexosaminidases - antagonists & inhibitors Cell Membrane - metabolism Cloning Deoxyribonucleic acid DNA drugs Enzymes Fucose Gene expression Genes, Plant Glycan Glycoproteins Glycosylation glyco‐engineering Heterogeneity hosts humans Immunoglobulin G Immunoglobulins leaves Localization mutants Nicotiana - enzymology Nicotiana - genetics Nicotiana - metabolism Nicotiana benthamiana N‐glycosylation Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified - metabolism plant‐made pharmaceuticals plasma membrane Polysaccharides Polysaccharides - biosynthesis Polysaccharides - metabolism Protein expression Proteins recombinant proteins Recombinant Proteins - biosynthesis Recombinant Proteins - metabolism Residues RNA interference RNA-mediated interference vacuoles Vacuoles - metabolism α1‐antitrypsin |
title | Reduced paucimannosidic N‐glycan formation by suppression of a specific β‐hexosaminidase from Nicotiana benthamiana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20paucimannosidic%20N%E2%80%90glycan%20formation%20by%20suppression%20of%20a%20specific%20%CE%B2%E2%80%90hexosaminidase%20from%20Nicotiana%20benthamiana&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Shin,%20Yun%E2%80%90Ji&rft.date=2017-02&rft.volume=15&rft.issue=2&rft.spage=197&rft.epage=206&rft.pages=197-206&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12602&rft_dat=%3Cproquest_pubme%3E2053887138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290245086&rft_id=info:pmid/27421111&rfr_iscdi=true |