SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer

Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-01, Vol.355 (6320), p.84-88
Hauptverfasser: Mu, Ping, Zhang, Zeda, Benelli, Matteo, Karthaus, Wouter R., Hoover, Elizabeth, Chen, Chi-Chao, Wongvipat, John, Ku, Sheng-Yu, Gao, Dong, Cao, Zhen, Shah, Neel, Adams, Elizabeth J., Abida, Wassim, Watson, Philip A., Prandi, Davide, Huang, Chun-Hao, de Stanchina, Elisa, Lowe, Scott W., Ellis, Leigh, Beltran, Himisha, Rubin, Mark A., Goodrich, David W., Demichelis, Francesca, Sawyers, Charles L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 6320
container_start_page 84
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Mu, Ping
Zhang, Zeda
Benelli, Matteo
Karthaus, Wouter R.
Hoover, Elizabeth
Chen, Chi-Chao
Wongvipat, John
Ku, Sheng-Yu
Gao, Dong
Cao, Zhen
Shah, Neel
Adams, Elizabeth J.
Abida, Wassim
Watson, Philip A.
Prandi, Davide
Huang, Chun-Hao
de Stanchina, Elisa
Lowe, Scott W.
Ellis, Leigh
Beltran, Himisha
Rubin, Mark A.
Goodrich, David W.
Demichelis, Francesca
Sawyers, Charles L.
description Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)–dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.
doi_str_mv 10.1126/science.aah4307
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917839</jstor_id><sourcerecordid>24917839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-4a0f4e238140439474fcf52d79c2794984ca5160723a5b2cd9cba2df6c49efe33</originalsourceid><addsrcrecordid>eNqNkc1vVCEUxYnR2LG6dqV5iRs3r4ULPGBjok39SJrUaE3cEYZ335TJm8cUGJP-9-U5Y_1YuSB3cX4cDvcQ8pzRE8agO80-4OTxxLlrwal6QBaMGtkaoPwhWVDKu1ZTJY_Ik5zXlFbN8MfkCDSVRnV6QVZfL79Ds01xEwvmZgwTuhU229HlEnwot42b-npKqDPFFU5NwhxycfXZJkzN1WfJ25_Ql3es7XEIc6QyW1aoYONnMj0ljwY3Znx2mMfk2_vzq7OP7cXlh09nby9aLwFKKxwdBALXTFDBjVBi8IOEXhkPygijhXeSdVQBd3IJvjd-6aAfOi8MDsj5MXmz993ulhvsfY2S3Gi3KWxcurXRBfu3MoVru4o_rAShlIBq8PpgkOLNDnOxm5A9jqObMO6yZVpTCtAp_h-o7KQBoLPrq3_QddylqW6iUkpyDZ2YDU_3lK_LywmH-9yM2rlve-jbHvquN17--d17_lfBFXixB9a5xPRbF4YpzQ2_A3z7slQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875382643</pqid></control><display><type>article</type><title>SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Mu, Ping ; Zhang, Zeda ; Benelli, Matteo ; Karthaus, Wouter R. ; Hoover, Elizabeth ; Chen, Chi-Chao ; Wongvipat, John ; Ku, Sheng-Yu ; Gao, Dong ; Cao, Zhen ; Shah, Neel ; Adams, Elizabeth J. ; Abida, Wassim ; Watson, Philip A. ; Prandi, Davide ; Huang, Chun-Hao ; de Stanchina, Elisa ; Lowe, Scott W. ; Ellis, Leigh ; Beltran, Himisha ; Rubin, Mark A. ; Goodrich, David W. ; Demichelis, Francesca ; Sawyers, Charles L.</creator><creatorcontrib>Mu, Ping ; Zhang, Zeda ; Benelli, Matteo ; Karthaus, Wouter R. ; Hoover, Elizabeth ; Chen, Chi-Chao ; Wongvipat, John ; Ku, Sheng-Yu ; Gao, Dong ; Cao, Zhen ; Shah, Neel ; Adams, Elizabeth J. ; Abida, Wassim ; Watson, Philip A. ; Prandi, Davide ; Huang, Chun-Hao ; de Stanchina, Elisa ; Lowe, Scott W. ; Ellis, Leigh ; Beltran, Himisha ; Rubin, Mark A. ; Goodrich, David W. ; Demichelis, Francesca ; Sawyers, Charles L.</creatorcontrib><description>Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)–dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aah4307</identifier><identifier>PMID: 28059768</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Androgen Antagonists - therapeutic use ; Androgen receptors ; Androgens ; Benzamides ; Cancer ; Cell Line, Tumor ; Cell Lineage ; Cell Plasticity ; Deprivation ; Drug resistance ; Drugs ; Epigenetics ; Gene expression ; Hormones ; Humans ; In vitro methods and tests ; Male ; Mathematical models ; Mutation ; Nitriles ; Phenylthiohydantoin - analogs &amp; derivatives ; Phenylthiohydantoin - therapeutic use ; Plastic foam ; Plastic properties ; Plasticity ; Prostate ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - pathology ; Retinoblastoma ; Retinoblastoma Binding Proteins - genetics ; Sox2 protein ; SOXB1 Transcription Factors - genetics ; SOXB1 Transcription Factors - metabolism ; Suppressors ; Switching ; Therapy ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - genetics ; Tumors ; Ubiquitin-Protein Ligases - genetics</subject><ispartof>Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6320), p.84-88</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-4a0f4e238140439474fcf52d79c2794984ca5160723a5b2cd9cba2df6c49efe33</citedby><cites>FETCH-LOGICAL-c522t-4a0f4e238140439474fcf52d79c2794984ca5160723a5b2cd9cba2df6c49efe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917839$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917839$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28059768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Ping</creatorcontrib><creatorcontrib>Zhang, Zeda</creatorcontrib><creatorcontrib>Benelli, Matteo</creatorcontrib><creatorcontrib>Karthaus, Wouter R.</creatorcontrib><creatorcontrib>Hoover, Elizabeth</creatorcontrib><creatorcontrib>Chen, Chi-Chao</creatorcontrib><creatorcontrib>Wongvipat, John</creatorcontrib><creatorcontrib>Ku, Sheng-Yu</creatorcontrib><creatorcontrib>Gao, Dong</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Shah, Neel</creatorcontrib><creatorcontrib>Adams, Elizabeth J.</creatorcontrib><creatorcontrib>Abida, Wassim</creatorcontrib><creatorcontrib>Watson, Philip A.</creatorcontrib><creatorcontrib>Prandi, Davide</creatorcontrib><creatorcontrib>Huang, Chun-Hao</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Lowe, Scott W.</creatorcontrib><creatorcontrib>Ellis, Leigh</creatorcontrib><creatorcontrib>Beltran, Himisha</creatorcontrib><creatorcontrib>Rubin, Mark A.</creatorcontrib><creatorcontrib>Goodrich, David W.</creatorcontrib><creatorcontrib>Demichelis, Francesca</creatorcontrib><creatorcontrib>Sawyers, Charles L.</creatorcontrib><title>SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)–dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.</description><subject>Androgen Antagonists - therapeutic use</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Benzamides</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Lineage</subject><subject>Cell Plasticity</subject><subject>Deprivation</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Hormones</subject><subject>Humans</subject><subject>In vitro methods and tests</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Nitriles</subject><subject>Phenylthiohydantoin - analogs &amp; derivatives</subject><subject>Phenylthiohydantoin - therapeutic use</subject><subject>Plastic foam</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Retinoblastoma</subject><subject>Retinoblastoma Binding Proteins - genetics</subject><subject>Sox2 protein</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Suppressors</subject><subject>Switching</subject><subject>Therapy</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vVCEUxYnR2LG6dqV5iRs3r4ULPGBjok39SJrUaE3cEYZ335TJm8cUGJP-9-U5Y_1YuSB3cX4cDvcQ8pzRE8agO80-4OTxxLlrwal6QBaMGtkaoPwhWVDKu1ZTJY_Ik5zXlFbN8MfkCDSVRnV6QVZfL79Ds01xEwvmZgwTuhU229HlEnwot42b-npKqDPFFU5NwhxycfXZJkzN1WfJ25_Ql3es7XEIc6QyW1aoYONnMj0ljwY3Znx2mMfk2_vzq7OP7cXlh09nby9aLwFKKxwdBALXTFDBjVBi8IOEXhkPygijhXeSdVQBd3IJvjd-6aAfOi8MDsj5MXmz993ulhvsfY2S3Gi3KWxcurXRBfu3MoVru4o_rAShlIBq8PpgkOLNDnOxm5A9jqObMO6yZVpTCtAp_h-o7KQBoLPrq3_QddylqW6iUkpyDZ2YDU_3lK_LywmH-9yM2rlve-jbHvquN17--d17_lfBFXixB9a5xPRbF4YpzQ2_A3z7slQ</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Mu, Ping</creator><creator>Zhang, Zeda</creator><creator>Benelli, Matteo</creator><creator>Karthaus, Wouter R.</creator><creator>Hoover, Elizabeth</creator><creator>Chen, Chi-Chao</creator><creator>Wongvipat, John</creator><creator>Ku, Sheng-Yu</creator><creator>Gao, Dong</creator><creator>Cao, Zhen</creator><creator>Shah, Neel</creator><creator>Adams, Elizabeth J.</creator><creator>Abida, Wassim</creator><creator>Watson, Philip A.</creator><creator>Prandi, Davide</creator><creator>Huang, Chun-Hao</creator><creator>de Stanchina, Elisa</creator><creator>Lowe, Scott W.</creator><creator>Ellis, Leigh</creator><creator>Beltran, Himisha</creator><creator>Rubin, Mark A.</creator><creator>Goodrich, David W.</creator><creator>Demichelis, Francesca</creator><creator>Sawyers, Charles L.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170106</creationdate><title>SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer</title><author>Mu, Ping ; Zhang, Zeda ; Benelli, Matteo ; Karthaus, Wouter R. ; Hoover, Elizabeth ; Chen, Chi-Chao ; Wongvipat, John ; Ku, Sheng-Yu ; Gao, Dong ; Cao, Zhen ; Shah, Neel ; Adams, Elizabeth J. ; Abida, Wassim ; Watson, Philip A. ; Prandi, Davide ; Huang, Chun-Hao ; de Stanchina, Elisa ; Lowe, Scott W. ; Ellis, Leigh ; Beltran, Himisha ; Rubin, Mark A. ; Goodrich, David W. ; Demichelis, Francesca ; Sawyers, Charles L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-4a0f4e238140439474fcf52d79c2794984ca5160723a5b2cd9cba2df6c49efe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Androgen Antagonists - therapeutic use</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Benzamides</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Lineage</topic><topic>Cell Plasticity</topic><topic>Deprivation</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Hormones</topic><topic>Humans</topic><topic>In vitro methods and tests</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Nitriles</topic><topic>Phenylthiohydantoin - analogs &amp; derivatives</topic><topic>Phenylthiohydantoin - therapeutic use</topic><topic>Plastic foam</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Retinoblastoma</topic><topic>Retinoblastoma Binding Proteins - genetics</topic><topic>Sox2 protein</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Suppressors</topic><topic>Switching</topic><topic>Therapy</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Ping</creatorcontrib><creatorcontrib>Zhang, Zeda</creatorcontrib><creatorcontrib>Benelli, Matteo</creatorcontrib><creatorcontrib>Karthaus, Wouter R.</creatorcontrib><creatorcontrib>Hoover, Elizabeth</creatorcontrib><creatorcontrib>Chen, Chi-Chao</creatorcontrib><creatorcontrib>Wongvipat, John</creatorcontrib><creatorcontrib>Ku, Sheng-Yu</creatorcontrib><creatorcontrib>Gao, Dong</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Shah, Neel</creatorcontrib><creatorcontrib>Adams, Elizabeth J.</creatorcontrib><creatorcontrib>Abida, Wassim</creatorcontrib><creatorcontrib>Watson, Philip A.</creatorcontrib><creatorcontrib>Prandi, Davide</creatorcontrib><creatorcontrib>Huang, Chun-Hao</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Lowe, Scott W.</creatorcontrib><creatorcontrib>Ellis, Leigh</creatorcontrib><creatorcontrib>Beltran, Himisha</creatorcontrib><creatorcontrib>Rubin, Mark A.</creatorcontrib><creatorcontrib>Goodrich, David W.</creatorcontrib><creatorcontrib>Demichelis, Francesca</creatorcontrib><creatorcontrib>Sawyers, Charles L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Ping</au><au>Zhang, Zeda</au><au>Benelli, Matteo</au><au>Karthaus, Wouter R.</au><au>Hoover, Elizabeth</au><au>Chen, Chi-Chao</au><au>Wongvipat, John</au><au>Ku, Sheng-Yu</au><au>Gao, Dong</au><au>Cao, Zhen</au><au>Shah, Neel</au><au>Adams, Elizabeth J.</au><au>Abida, Wassim</au><au>Watson, Philip A.</au><au>Prandi, Davide</au><au>Huang, Chun-Hao</au><au>de Stanchina, Elisa</au><au>Lowe, Scott W.</au><au>Ellis, Leigh</au><au>Beltran, Himisha</au><au>Rubin, Mark A.</au><au>Goodrich, David W.</au><au>Demichelis, Francesca</au><au>Sawyers, Charles L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>355</volume><issue>6320</issue><spage>84</spage><epage>88</epage><pages>84-88</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Some cancers evade targeted therapies through a mechanism known as lineage plasticity, whereby tumor cells acquire phenotypic characteristics of a cell lineage whose survival no longer depends on the drug target. We use in vitro and in vivo human prostate cancer models to show that these tumors can develop resistance to the antiandrogen drug enzalutamide by a phenotypic shift from androgen receptor (AR)–dependent luminal epithelial cells to AR-independent basal-like cells. This lineage plasticity is enabled by the loss of TP53 and RB1 function, is mediated by increased expression of the reprogramming transcription factor SOX2, and can be reversed by restoring TP53 and RB1 function or by inhibiting SOX2 expression. Thus, mutations in tumor suppressor genes can create a state of increased cellular plasticity that, when challenged with antiandrogen therapy, promotes resistance through lineage switching.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28059768</pmid><doi>10.1126/science.aah4307</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6320), p.84-88
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5247742
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Androgen Antagonists - therapeutic use
Androgen receptors
Androgens
Benzamides
Cancer
Cell Line, Tumor
Cell Lineage
Cell Plasticity
Deprivation
Drug resistance
Drugs
Epigenetics
Gene expression
Hormones
Humans
In vitro methods and tests
Male
Mathematical models
Mutation
Nitriles
Phenylthiohydantoin - analogs & derivatives
Phenylthiohydantoin - therapeutic use
Plastic foam
Plastic properties
Plasticity
Prostate
Prostate cancer
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - genetics
Prostatic Neoplasms - pathology
Retinoblastoma
Retinoblastoma Binding Proteins - genetics
Sox2 protein
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - metabolism
Suppressors
Switching
Therapy
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumors
Ubiquitin-Protein Ligases - genetics
title SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOX2%20promotes%20lineage%20plasticity%20and%20antiandrogen%20resistance%20in%20TP53-%20and%20RB1-deficient%20prostate%20cancer&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Mu,%20Ping&rft.date=2017-01-06&rft.volume=355&rft.issue=6320&rft.spage=84&rft.epage=88&rft.pages=84-88&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aah4307&rft_dat=%3Cjstor_pubme%3E24917839%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875382643&rft_id=info:pmid/28059768&rft_jstor_id=24917839&rfr_iscdi=true