mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice

Summary Studies of the mTOR pathway have prompted speculation that diminished mTOR complex‐1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long‐lived mutant mice: Snell dwarf mice, growth hormone rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2017-02, Vol.16 (1), p.52-60
Hauptverfasser: Dominick, Graham, Bowman, Jacqueline, Li, Xinna, Miller, Richard A., Garcia, Gonzalo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 52
container_title Aging cell
container_volume 16
creator Dominick, Graham
Bowman, Jacqueline
Li, Xinna
Miller, Richard A.
Garcia, Gonzalo G.
description Summary Studies of the mTOR pathway have prompted speculation that diminished mTOR complex‐1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long‐lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy‐associated protein‐A (PAPPA‐KO). The ways in which lower mTOR signals slow aging and age‐related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA‐KO mice express high levels of two proteins involved in DNA repair, O‐6‐methylguanine‐DNA methyltransferase (MGMT) and N‐myc downstream‐regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post‐transcriptional mechanisms. We show that the CCR4‐NOT complex, a post‐transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long‐lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post‐transcriptional regulation involving specific alteration in the CCR4‐NOT complex, whose modulation could control multiple aspects of the aging process.
doi_str_mv 10.1111/acel.12525
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707845779</galeid><sourcerecordid>A707845779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6145-5d896144281fd4b05396a52a35fcae5ed224dc22d2644bbdc7a3773dd2f6f07e3</originalsourceid><addsrcrecordid>eNqNktFu0zAUhiMEYmNwwwMgS9wgtBbbsePkZlJUxoZW0WqMa8uNT7pMjl3iZKNc8Qg8I0_CKR2FIYSwL3xkf-e39ftPkqeMjhmOV6YCN2Zccnkv2WdCiVGheHZ_V7N8L3kU4xWlTBU0fZjscZWxXOViP-nbi9k56WA5ONNDJP0lEPi06iDGJngSavL6XUmsac0SEIur4CMS_vO6RbrxxAW__Pblq2uuwZL3Hpwj9sZ09SE5OT0_mx0S4y2Zl_N5idTZjLRNBY-TB7VxEZ7crgfJhzfHF5PT0XR28nZSTkdVxoQcSZsXWAies9qKBZVpkRnJTSrryoAEy7mwFeeWZ0IsFrZSJlUqtZbXWU0VpAfJ0VZ3NSxasBX4vjNOr7qmNd1aB9Pouye-udTLcK0lFzylKQq8uBXowscBYq_bJqLbzngIQ9RoIj4uzwv5H2gqJRUZKxB9_gd6FYbOoxNIyVxmion8F7U0DnTj64BPrDaiulQUP08qtdEa_4XCaQGdDh7qBvfvNLzcNlRdiLGDemcHo3oTJ72Jk_4RJ4Sf_W7gDv2ZHwTYFrjBa9b_kNLl5Hi6Ff0OSOnUJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858567148</pqid></control><display><type>article</type><title>mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dominick, Graham ; Bowman, Jacqueline ; Li, Xinna ; Miller, Richard A. ; Garcia, Gonzalo G.</creator><creatorcontrib>Dominick, Graham ; Bowman, Jacqueline ; Li, Xinna ; Miller, Richard A. ; Garcia, Gonzalo G.</creatorcontrib><description>Summary Studies of the mTOR pathway have prompted speculation that diminished mTOR complex‐1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long‐lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy‐associated protein‐A (PAPPA‐KO). The ways in which lower mTOR signals slow aging and age‐related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA‐KO mice express high levels of two proteins involved in DNA repair, O‐6‐methylguanine‐DNA methyltransferase (MGMT) and N‐myc downstream‐regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post‐transcriptional mechanisms. We show that the CCR4‐NOT complex, a post‐transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long‐lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post‐transcriptional regulation involving specific alteration in the CCR4‐NOT complex, whose modulation could control multiple aspects of the aging process.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12525</identifier><identifier>PMID: 27618784</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aging ; Animals ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA Modification Methylases - genetics ; DNA Modification Methylases - metabolism ; DNA repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; Down-Regulation - drug effects ; Dwarfism - metabolism ; Enzymes ; Female ; Gene expression ; Genes ; Genetic transcription ; IGF ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Liver - drug effects ; Liver - metabolism ; Longevity ; Male ; Mice ; Mice, Knockout ; Models, Biological ; molecular biology of aging ; Original ; Pregnancy-Associated Plasma Protein-A - deficiency ; Pregnancy-Associated Plasma Protein-A - metabolism ; Receptors, CCR4 - metabolism ; Receptors, Somatotropin - deficiency ; Receptors, Somatotropin - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; signal transduction ; Sirolimus - pharmacology ; Somatotropin ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factors - metabolism ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Aging cell, 2017-02, Vol.16 (1), p.52-60</ispartof><rights>2016 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 The Anatomical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6145-5d896144281fd4b05396a52a35fcae5ed224dc22d2644bbdc7a3773dd2f6f07e3</citedby><cites>FETCH-LOGICAL-c6145-5d896144281fd4b05396a52a35fcae5ed224dc22d2644bbdc7a3773dd2f6f07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27618784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominick, Graham</creatorcontrib><creatorcontrib>Bowman, Jacqueline</creatorcontrib><creatorcontrib>Li, Xinna</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Garcia, Gonzalo G.</creatorcontrib><title>mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary Studies of the mTOR pathway have prompted speculation that diminished mTOR complex‐1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long‐lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy‐associated protein‐A (PAPPA‐KO). The ways in which lower mTOR signals slow aging and age‐related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA‐KO mice express high levels of two proteins involved in DNA repair, O‐6‐methylguanine‐DNA methyltransferase (MGMT) and N‐myc downstream‐regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post‐transcriptional mechanisms. We show that the CCR4‐NOT complex, a post‐transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long‐lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post‐transcriptional regulation involving specific alteration in the CCR4‐NOT complex, whose modulation could control multiple aspects of the aging process.</description><subject>Aging</subject><subject>Animals</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Modification Methylases - genetics</subject><subject>DNA Modification Methylases - metabolism</subject><subject>DNA repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Down-Regulation - drug effects</subject><subject>Dwarfism - metabolism</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic transcription</subject><subject>IGF</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Longevity</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>molecular biology of aging</subject><subject>Original</subject><subject>Pregnancy-Associated Plasma Protein-A - deficiency</subject><subject>Pregnancy-Associated Plasma Protein-A - metabolism</subject><subject>Receptors, CCR4 - metabolism</subject><subject>Receptors, Somatotropin - deficiency</subject><subject>Receptors, Somatotropin - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>signal transduction</subject><subject>Sirolimus - pharmacology</subject><subject>Somatotropin</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNktFu0zAUhiMEYmNwwwMgS9wgtBbbsePkZlJUxoZW0WqMa8uNT7pMjl3iZKNc8Qg8I0_CKR2FIYSwL3xkf-e39ftPkqeMjhmOV6YCN2Zccnkv2WdCiVGheHZ_V7N8L3kU4xWlTBU0fZjscZWxXOViP-nbi9k56WA5ONNDJP0lEPi06iDGJngSavL6XUmsac0SEIur4CMS_vO6RbrxxAW__Pblq2uuwZL3Hpwj9sZ09SE5OT0_mx0S4y2Zl_N5idTZjLRNBY-TB7VxEZ7crgfJhzfHF5PT0XR28nZSTkdVxoQcSZsXWAies9qKBZVpkRnJTSrryoAEy7mwFeeWZ0IsFrZSJlUqtZbXWU0VpAfJ0VZ3NSxasBX4vjNOr7qmNd1aB9Pouye-udTLcK0lFzylKQq8uBXowscBYq_bJqLbzngIQ9RoIj4uzwv5H2gqJRUZKxB9_gd6FYbOoxNIyVxmion8F7U0DnTj64BPrDaiulQUP08qtdEa_4XCaQGdDh7qBvfvNLzcNlRdiLGDemcHo3oTJ72Jk_4RJ4Sf_W7gDv2ZHwTYFrjBa9b_kNLl5Hi6Ff0OSOnUJw</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Dominick, Graham</creator><creator>Bowman, Jacqueline</creator><creator>Li, Xinna</creator><creator>Miller, Richard A.</creator><creator>Garcia, Gonzalo G.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>201702</creationdate><title>mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice</title><author>Dominick, Graham ; Bowman, Jacqueline ; Li, Xinna ; Miller, Richard A. ; Garcia, Gonzalo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6145-5d896144281fd4b05396a52a35fcae5ed224dc22d2644bbdc7a3773dd2f6f07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Modification Methylases - genetics</topic><topic>DNA Modification Methylases - metabolism</topic><topic>DNA repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Down-Regulation - drug effects</topic><topic>Dwarfism - metabolism</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic transcription</topic><topic>IGF</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Longevity</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>molecular biology of aging</topic><topic>Original</topic><topic>Pregnancy-Associated Plasma Protein-A - deficiency</topic><topic>Pregnancy-Associated Plasma Protein-A - metabolism</topic><topic>Receptors, CCR4 - metabolism</topic><topic>Receptors, Somatotropin - deficiency</topic><topic>Receptors, Somatotropin - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>signal transduction</topic><topic>Sirolimus - pharmacology</topic><topic>Somatotropin</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominick, Graham</creatorcontrib><creatorcontrib>Bowman, Jacqueline</creatorcontrib><creatorcontrib>Li, Xinna</creatorcontrib><creatorcontrib>Miller, Richard A.</creatorcontrib><creatorcontrib>Garcia, Gonzalo G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominick, Graham</au><au>Bowman, Jacqueline</au><au>Li, Xinna</au><au>Miller, Richard A.</au><au>Garcia, Gonzalo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2017-02</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary Studies of the mTOR pathway have prompted speculation that diminished mTOR complex‐1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long‐lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy‐associated protein‐A (PAPPA‐KO). The ways in which lower mTOR signals slow aging and age‐related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA‐KO mice express high levels of two proteins involved in DNA repair, O‐6‐methylguanine‐DNA methyltransferase (MGMT) and N‐myc downstream‐regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post‐transcriptional mechanisms. We show that the CCR4‐NOT complex, a post‐transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long‐lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post‐transcriptional regulation involving specific alteration in the CCR4‐NOT complex, whose modulation could control multiple aspects of the aging process.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27618784</pmid><doi>10.1111/acel.12525</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2017-02, Vol.16 (1), p.52-60
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5242303
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Aging
Animals
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Deoxyribonucleic acid
DNA
DNA Damage
DNA Modification Methylases - genetics
DNA Modification Methylases - metabolism
DNA repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
Down-Regulation - drug effects
Dwarfism - metabolism
Enzymes
Female
Gene expression
Genes
Genetic transcription
IGF
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Liver - drug effects
Liver - metabolism
Longevity
Male
Mice
Mice, Knockout
Models, Biological
molecular biology of aging
Original
Pregnancy-Associated Plasma Protein-A - deficiency
Pregnancy-Associated Plasma Protein-A - metabolism
Receptors, CCR4 - metabolism
Receptors, Somatotropin - deficiency
Receptors, Somatotropin - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
signal transduction
Sirolimus - pharmacology
Somatotropin
TOR Serine-Threonine Kinases - metabolism
Transcription Factors - metabolism
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTOR%20regulates%20the%20expression%20of%20DNA%20damage%20response%20enzymes%20in%20long%E2%80%90lived%20Snell%20dwarf,%20GHRKO,%20and%20PAPPA%E2%80%90KO%20mice&rft.jtitle=Aging%20cell&rft.au=Dominick,%20Graham&rft.date=2017-02&rft.volume=16&rft.issue=1&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12525&rft_dat=%3Cgale_pubme%3EA707845779%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858567148&rft_id=info:pmid/27618784&rft_galeid=A707845779&rfr_iscdi=true