Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing
Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2017-01, Vol.18 (1), p.90-90, Article 90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | BMC genomics |
container_volume | 18 |
creator | Wang, Menghan Lin, Fangqin Xing, Ke Liu, Li |
description | Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins.
The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno's hypothesis of dosage compensation was refuted by our post-implantation stage data.
We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo. |
doi_str_mv | 10.1186/s12864-016-3466-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478122450</galeid><sourcerecordid>A478122450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-f7e7936a699634ad4b0fc64c9a7443b35e0d14a5050667db1ffdf0f07a74f5a73</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhkNR-mV_gDcy4I29SM13MjfCUmwtFAurQu9CJpNsU2aSOplZ3H9vhq1lV0RykXDynDfnnLwAvMXoAmMlPmZMlGAQYQEpEwKqA3CMmcSQYMFe7ZyPwEnOjwhhqQg_BEdEoZpLKY_B3dLENvXVPbQPQ-pTTr2rQjR2DGszhhSrdhNNH2wu0Wod1qlqNlUOcdU5aF3XVcuviyq7n5OLtkTfgNfedNmdPe-n4MfV5--XX-Dt3fXN5eIWWs7FCL10sqbCiLoWlJmWNchbwWxtJGO0odyhFjPDEUdCyLbB3rceeSTLvedG0lPwaav7NDW9a62L42A6_TSE3gwbnUzQ-zcxPOhVWmtOGGJUFYEPzwJDKsXnUfchzw2Z6NKUdZkv5kIhRQr6_i_0MU1DLO1pQpmikjPxX6poUaWwlDvUynROh-hTqc7OT-sFkwoTwjgq1MU_qLJaV74iRedDie8lnO8lFGZ0v8aVmXLWN9-W-yzesnZIOQ_Ov0wNIz37Sm99pYuv9OwrPU_r3e64XzL-GIn-Bi_3xY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863881772</pqid></control><display><type>article</type><title>Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Wang, Menghan ; Lin, Fangqin ; Xing, Ke ; Liu, Li</creator><creatorcontrib>Wang, Menghan ; Lin, Fangqin ; Xing, Ke ; Liu, Li</creatorcontrib><description>Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins.
The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno's hypothesis of dosage compensation was refuted by our post-implantation stage data.
We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-016-3466-8</identifier><identifier>PMID: 28095777</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Cell differentiation ; Chromosomes ; Cluster Analysis ; Deactivation ; Developmental stages ; Diagnosis ; Differentiation (biology) ; Dosage compensation ; Dynamics ; Embryo cells ; Embryo, Mammalian - metabolism ; Embryonic stem cells ; Embryos ; Female ; Gene expression ; Gene sequencing ; Gene silencing ; Genes ; Genomes ; Genomics ; Heterogeneity ; High-Throughput Nucleotide Sequencing ; Implantation ; In vivo methods and tests ; Inactivation ; Mice ; Mice, Inbred C57BL ; Principal Component Analysis ; Principal components analysis ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA - isolation & purification ; RNA - metabolism ; RNA sequencing ; Sequence Analysis, RNA ; Single-Cell Analysis ; Stem cells ; Studies ; Surgical implants ; X Chromosome - genetics ; X Chromosome - metabolism ; X chromosome inactivation ; X Chromosome Inactivation - physiology ; X chromosomes</subject><ispartof>BMC genomics, 2017-01, Vol.18 (1), p.90-90, Article 90</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-f7e7936a699634ad4b0fc64c9a7443b35e0d14a5050667db1ffdf0f07a74f5a73</citedby><cites>FETCH-LOGICAL-c556t-f7e7936a699634ad4b0fc64c9a7443b35e0d14a5050667db1ffdf0f07a74f5a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240438/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240438/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28095777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lin, Fangqin</creatorcontrib><creatorcontrib>Xing, Ke</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><title>Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins.
The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno's hypothesis of dosage compensation was refuted by our post-implantation stage data.
We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo.</description><subject>Analysis</subject><subject>Animals</subject><subject>Cell differentiation</subject><subject>Chromosomes</subject><subject>Cluster Analysis</subject><subject>Deactivation</subject><subject>Developmental stages</subject><subject>Diagnosis</subject><subject>Differentiation (biology)</subject><subject>Dosage compensation</subject><subject>Dynamics</subject><subject>Embryo cells</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Embryonic stem cells</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Inactivation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - isolation & purification</subject><subject>RNA - metabolism</subject><subject>RNA sequencing</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>X Chromosome - genetics</subject><subject>X Chromosome - metabolism</subject><subject>X chromosome inactivation</subject><subject>X Chromosome Inactivation - physiology</subject><subject>X chromosomes</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kl1rFDEUhkNR-mV_gDcy4I29SM13MjfCUmwtFAurQu9CJpNsU2aSOplZ3H9vhq1lV0RykXDynDfnnLwAvMXoAmMlPmZMlGAQYQEpEwKqA3CMmcSQYMFe7ZyPwEnOjwhhqQg_BEdEoZpLKY_B3dLENvXVPbQPQ-pTTr2rQjR2DGszhhSrdhNNH2wu0Wod1qlqNlUOcdU5aF3XVcuviyq7n5OLtkTfgNfedNmdPe-n4MfV5--XX-Dt3fXN5eIWWs7FCL10sqbCiLoWlJmWNchbwWxtJGO0odyhFjPDEUdCyLbB3rceeSTLvedG0lPwaav7NDW9a62L42A6_TSE3gwbnUzQ-zcxPOhVWmtOGGJUFYEPzwJDKsXnUfchzw2Z6NKUdZkv5kIhRQr6_i_0MU1DLO1pQpmikjPxX6poUaWwlDvUynROh-hTqc7OT-sFkwoTwjgq1MU_qLJaV74iRedDie8lnO8lFGZ0v8aVmXLWN9-W-yzesnZIOQ_Ov0wNIz37Sm99pYuv9OwrPU_r3e64XzL-GIn-Bi_3xY8</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Wang, Menghan</creator><creator>Lin, Fangqin</creator><creator>Xing, Ke</creator><creator>Liu, Li</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170117</creationdate><title>Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing</title><author>Wang, Menghan ; Lin, Fangqin ; Xing, Ke ; Liu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-f7e7936a699634ad4b0fc64c9a7443b35e0d14a5050667db1ffdf0f07a74f5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Cell differentiation</topic><topic>Chromosomes</topic><topic>Cluster Analysis</topic><topic>Deactivation</topic><topic>Developmental stages</topic><topic>Diagnosis</topic><topic>Differentiation (biology)</topic><topic>Dosage compensation</topic><topic>Dynamics</topic><topic>Embryo cells</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Embryonic stem cells</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Inactivation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - isolation & purification</topic><topic>RNA - metabolism</topic><topic>RNA sequencing</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>X Chromosome - genetics</topic><topic>X Chromosome - metabolism</topic><topic>X chromosome inactivation</topic><topic>X Chromosome Inactivation - physiology</topic><topic>X chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lin, Fangqin</creatorcontrib><creatorcontrib>Xing, Ke</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Menghan</au><au>Lin, Fangqin</au><au>Xing, Ke</au><au>Liu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>90</spage><epage>90</epage><pages>90-90</pages><artnum>90</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Random X-chromosome inactivation (rXCI) is important for the maintenance of normal somatic cell functions in female eutherian mammals. The dynamics of X-chromosome inactivation initiation has been widely studied by assessing embryonic stem cell differentiation in vitro. To investigate the phenomenon in vivo, we applied RNA sequencing to single cells from female embryos obtained from a natural intercrossing of two genetically distant mouse strains. Instead of artificially assigning the parental origin of the inactive X chromosome, the inactive X chromosomes in this study were randomly selected from the natural developmental periods and thus included both paternal and maternal origins.
The rXCI stages of single cells from the same developmental stage showed heterogeneity. The high resolution of the rXCI dynamics was exhibited. The inactivation orders of X chromosomal genes were determined by their functions, expression levels, and locations; generally, the inactivation order did not exhibit a parental origin preference. New escape genes were identified. Ohno's hypothesis of dosage compensation was refuted by our post-implantation stage data.
We found the inactivation orders of X chromosomal genes were determined by their own properties. Generally, the inactivation order did not exhibit a parental origin preference. It provided insights into the gene silencing dynamics during rXCI in vivo.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28095777</pmid><doi>10.1186/s12864-016-3466-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2017-01, Vol.18 (1), p.90-90, Article 90 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240438 |
source | MEDLINE; Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Analysis Animals Cell differentiation Chromosomes Cluster Analysis Deactivation Developmental stages Diagnosis Differentiation (biology) Dosage compensation Dynamics Embryo cells Embryo, Mammalian - metabolism Embryonic stem cells Embryos Female Gene expression Gene sequencing Gene silencing Genes Genomes Genomics Heterogeneity High-Throughput Nucleotide Sequencing Implantation In vivo methods and tests Inactivation Mice Mice, Inbred C57BL Principal Component Analysis Principal components analysis Ribonucleic acid RNA RNA - chemistry RNA - isolation & purification RNA - metabolism RNA sequencing Sequence Analysis, RNA Single-Cell Analysis Stem cells Studies Surgical implants X Chromosome - genetics X Chromosome - metabolism X chromosome inactivation X Chromosome Inactivation - physiology X chromosomes |
title | Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20X-chromosome%20inactivation%20dynamics%20in%20vivo%20by%20single-cell%20RNA%20sequencing&rft.jtitle=BMC%20genomics&rft.au=Wang,%20Menghan&rft.date=2017-01-17&rft.volume=18&rft.issue=1&rft.spage=90&rft.epage=90&rft.pages=90-90&rft.artnum=90&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-016-3466-8&rft_dat=%3Cgale_pubme%3EA478122450%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863881772&rft_id=info:pmid/28095777&rft_galeid=A478122450&rfr_iscdi=true |