Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis

Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial cell factories 2017-01, Vol.16 (1), p.9, Article 9
Hauptverfasser: Kim, Myoun-Su, Cho, Wan-Je, Song, Myoung Chong, Park, Seong-Whan, Kim, Kaeun, Kim, Eunji, Lee, Naryeong, Nam, Sang-Jip, Oh, Ki-Hoon, Yoon, Yeo Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 9
container_title Microbial cell factories
container_volume 16
creator Kim, Myoun-Su
Cho, Wan-Je
Song, Myoung Chong
Park, Seong-Whan
Kim, Kaeun
Kim, Eunji
Lee, Naryeong
Nam, Sang-Jip
Oh, Ki-Hoon
Yoon, Yeo Joon
description Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.
doi_str_mv 10.1186/s12934-017-0626-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478122518</galeid><sourcerecordid>A478122518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</originalsourceid><addsrcrecordid>eNptkl1rFTEQhoMotlZ_gDey4JUXW_Od7I1QStVCQbB6HbLZ2T0pu8kxyRbPvzeHU2sPSC6SzDzvy2QyCL0l-JwQLT9mQjvGW0xUiyWVrX6GTglXoqVadM-fnE_Qq5zvcAW1Yi_RCdW4E1qKUzRdhckHgARD0_uYd6FsIPvcxLFZ_NzDsnM-5MaHpiYaew9pAVfqdeOnTbtNcVgrMDW5JFujtyXBtsSqgnygffGzz6_Ri9HOGd487Gfo5-erH5df25tvX64vL25aJ6gubSct9I71dLAW9x1IzgbCpVSgmGBY4Z5ToTghnFLHMaVMdM5aK7TlvewUO0OfDr7btV9gcBBqXbPZJr_YtDPRenOcCX5jpnhvBOWYE1EN3j8YpPhrhVzMXVxTqDWb2nJBCOVU_qMmO4PxYYzVzC0-O3PBlSaUCqIrdf4fqq4BFu9igNHX-JHgw5GgMgV-l8muOZvr2-_HLDmwLsWcE4yPjyTY7MfDHMbD1F83-_Ewe827p915VPydB_YHNSC12Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865112426</pqid></control><display><type>article</type><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</creator><creatorcontrib>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</creatorcontrib><description>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-017-0626-8</identifier><identifier>PMID: 28095865</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Anti-Bacterial Agents - biosynthesis ; Biosynthesis ; Biosynthetic Pathways - genetics ; Fermentation ; Insecticides ; Ivermectin - analogs &amp; derivatives ; Ivermectin - metabolism ; Macrolides ; Macrolides - isolation &amp; purification ; Macrolides - metabolism ; Methyltransferases - metabolism ; Molecular Structure ; Physiological aspects ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Streptomyces - genetics ; Streptomyces - metabolism ; Transferases</subject><ispartof>Microbial cell factories, 2017-01, Vol.16 (1), p.9, Article 9</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</citedby><cites>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28095865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Myoun-Su</creatorcontrib><creatorcontrib>Cho, Wan-Je</creatorcontrib><creatorcontrib>Song, Myoung Chong</creatorcontrib><creatorcontrib>Park, Seong-Whan</creatorcontrib><creatorcontrib>Kim, Kaeun</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Lee, Naryeong</creatorcontrib><creatorcontrib>Nam, Sang-Jip</creatorcontrib><creatorcontrib>Oh, Ki-Hoon</creatorcontrib><creatorcontrib>Yoon, Yeo Joon</creatorcontrib><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</description><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Fermentation</subject><subject>Insecticides</subject><subject>Ivermectin - analogs &amp; derivatives</subject><subject>Ivermectin - metabolism</subject><subject>Macrolides</subject><subject>Macrolides - isolation &amp; purification</subject><subject>Macrolides - metabolism</subject><subject>Methyltransferases - metabolism</subject><subject>Molecular Structure</subject><subject>Physiological aspects</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><subject>Transferases</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1rFTEQhoMotlZ_gDey4JUXW_Od7I1QStVCQbB6HbLZ2T0pu8kxyRbPvzeHU2sPSC6SzDzvy2QyCL0l-JwQLT9mQjvGW0xUiyWVrX6GTglXoqVadM-fnE_Qq5zvcAW1Yi_RCdW4E1qKUzRdhckHgARD0_uYd6FsIPvcxLFZ_NzDsnM-5MaHpiYaew9pAVfqdeOnTbtNcVgrMDW5JFujtyXBtsSqgnygffGzz6_Ri9HOGd487Gfo5-erH5df25tvX64vL25aJ6gubSct9I71dLAW9x1IzgbCpVSgmGBY4Z5ToTghnFLHMaVMdM5aK7TlvewUO0OfDr7btV9gcBBqXbPZJr_YtDPRenOcCX5jpnhvBOWYE1EN3j8YpPhrhVzMXVxTqDWb2nJBCOVU_qMmO4PxYYzVzC0-O3PBlSaUCqIrdf4fqq4BFu9igNHX-JHgw5GgMgV-l8muOZvr2-_HLDmwLsWcE4yPjyTY7MfDHMbD1F83-_Ewe827p915VPydB_YHNSC12Q</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Kim, Myoun-Su</creator><creator>Cho, Wan-Je</creator><creator>Song, Myoung Chong</creator><creator>Park, Seong-Whan</creator><creator>Kim, Kaeun</creator><creator>Kim, Eunji</creator><creator>Lee, Naryeong</creator><creator>Nam, Sang-Jip</creator><creator>Oh, Ki-Hoon</creator><creator>Yoon, Yeo Joon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20170117</creationdate><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><author>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Fermentation</topic><topic>Insecticides</topic><topic>Ivermectin - analogs &amp; derivatives</topic><topic>Ivermectin - metabolism</topic><topic>Macrolides</topic><topic>Macrolides - isolation &amp; purification</topic><topic>Macrolides - metabolism</topic><topic>Methyltransferases - metabolism</topic><topic>Molecular Structure</topic><topic>Physiological aspects</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><topic>Transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Myoun-Su</creatorcontrib><creatorcontrib>Cho, Wan-Je</creatorcontrib><creatorcontrib>Song, Myoung Chong</creatorcontrib><creatorcontrib>Park, Seong-Whan</creatorcontrib><creatorcontrib>Kim, Kaeun</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Lee, Naryeong</creatorcontrib><creatorcontrib>Nam, Sang-Jip</creatorcontrib><creatorcontrib>Oh, Ki-Hoon</creatorcontrib><creatorcontrib>Yoon, Yeo Joon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Myoun-Su</au><au>Cho, Wan-Je</au><au>Song, Myoung Chong</au><au>Park, Seong-Whan</au><au>Kim, Kaeun</au><au>Kim, Eunji</au><au>Lee, Naryeong</au><au>Nam, Sang-Jip</au><au>Oh, Ki-Hoon</au><au>Yoon, Yeo Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28095865</pmid><doi>10.1186/s12934-017-0626-8</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-2859
ispartof Microbial cell factories, 2017-01, Vol.16 (1), p.9, Article 9
issn 1475-2859
1475-2859
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240415
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects Anti-Bacterial Agents - biosynthesis
Biosynthesis
Biosynthetic Pathways - genetics
Fermentation
Insecticides
Ivermectin - analogs & derivatives
Ivermectin - metabolism
Macrolides
Macrolides - isolation & purification
Macrolides - metabolism
Methyltransferases - metabolism
Molecular Structure
Physiological aspects
Polyketide Synthases - genetics
Polyketide Synthases - metabolism
Streptomyces - genetics
Streptomyces - metabolism
Transferases
title Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20biosynthesis%20of%20milbemycins%20in%20the%20avermectin%20high-producing%20strain%20Streptomyces%20avermitilis&rft.jtitle=Microbial%20cell%20factories&rft.au=Kim,%20Myoun-Su&rft.date=2017-01-17&rft.volume=16&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-017-0626-8&rft_dat=%3Cgale_pubme%3EA478122518%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865112426&rft_id=info:pmid/28095865&rft_galeid=A478122518&rfr_iscdi=true