Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis
Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic act...
Gespeichert in:
Veröffentlicht in: | Microbial cell factories 2017-01, Vol.16 (1), p.9, Article 9 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Microbial cell factories |
container_volume | 16 |
creator | Kim, Myoun-Su Cho, Wan-Je Song, Myoung Chong Park, Seong-Whan Kim, Kaeun Kim, Eunji Lee, Naryeong Nam, Sang-Jip Oh, Ki-Hoon Yoon, Yeo Joon |
description | Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities.
The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D.
We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential. |
doi_str_mv | 10.1186/s12934-017-0626-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478122518</galeid><sourcerecordid>A478122518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</originalsourceid><addsrcrecordid>eNptkl1rFTEQhoMotlZ_gDey4JUXW_Od7I1QStVCQbB6HbLZ2T0pu8kxyRbPvzeHU2sPSC6SzDzvy2QyCL0l-JwQLT9mQjvGW0xUiyWVrX6GTglXoqVadM-fnE_Qq5zvcAW1Yi_RCdW4E1qKUzRdhckHgARD0_uYd6FsIPvcxLFZ_NzDsnM-5MaHpiYaew9pAVfqdeOnTbtNcVgrMDW5JFujtyXBtsSqgnygffGzz6_Ri9HOGd487Gfo5-erH5df25tvX64vL25aJ6gubSct9I71dLAW9x1IzgbCpVSgmGBY4Z5ToTghnFLHMaVMdM5aK7TlvewUO0OfDr7btV9gcBBqXbPZJr_YtDPRenOcCX5jpnhvBOWYE1EN3j8YpPhrhVzMXVxTqDWb2nJBCOVU_qMmO4PxYYzVzC0-O3PBlSaUCqIrdf4fqq4BFu9igNHX-JHgw5GgMgV-l8muOZvr2-_HLDmwLsWcE4yPjyTY7MfDHMbD1F83-_Ewe827p915VPydB_YHNSC12Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865112426</pqid></control><display><type>article</type><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</creator><creatorcontrib>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</creatorcontrib><description>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities.
The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D.
We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</description><identifier>ISSN: 1475-2859</identifier><identifier>EISSN: 1475-2859</identifier><identifier>DOI: 10.1186/s12934-017-0626-8</identifier><identifier>PMID: 28095865</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Anti-Bacterial Agents - biosynthesis ; Biosynthesis ; Biosynthetic Pathways - genetics ; Fermentation ; Insecticides ; Ivermectin - analogs & derivatives ; Ivermectin - metabolism ; Macrolides ; Macrolides - isolation & purification ; Macrolides - metabolism ; Methyltransferases - metabolism ; Molecular Structure ; Physiological aspects ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Streptomyces - genetics ; Streptomyces - metabolism ; Transferases</subject><ispartof>Microbial cell factories, 2017-01, Vol.16 (1), p.9, Article 9</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</citedby><cites>FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28095865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Myoun-Su</creatorcontrib><creatorcontrib>Cho, Wan-Je</creatorcontrib><creatorcontrib>Song, Myoung Chong</creatorcontrib><creatorcontrib>Park, Seong-Whan</creatorcontrib><creatorcontrib>Kim, Kaeun</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Lee, Naryeong</creatorcontrib><creatorcontrib>Nam, Sang-Jip</creatorcontrib><creatorcontrib>Oh, Ki-Hoon</creatorcontrib><creatorcontrib>Yoon, Yeo Joon</creatorcontrib><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><title>Microbial cell factories</title><addtitle>Microb Cell Fact</addtitle><description>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities.
The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D.
We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</description><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Fermentation</subject><subject>Insecticides</subject><subject>Ivermectin - analogs & derivatives</subject><subject>Ivermectin - metabolism</subject><subject>Macrolides</subject><subject>Macrolides - isolation & purification</subject><subject>Macrolides - metabolism</subject><subject>Methyltransferases - metabolism</subject><subject>Molecular Structure</subject><subject>Physiological aspects</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><subject>Transferases</subject><issn>1475-2859</issn><issn>1475-2859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkl1rFTEQhoMotlZ_gDey4JUXW_Od7I1QStVCQbB6HbLZ2T0pu8kxyRbPvzeHU2sPSC6SzDzvy2QyCL0l-JwQLT9mQjvGW0xUiyWVrX6GTglXoqVadM-fnE_Qq5zvcAW1Yi_RCdW4E1qKUzRdhckHgARD0_uYd6FsIPvcxLFZ_NzDsnM-5MaHpiYaew9pAVfqdeOnTbtNcVgrMDW5JFujtyXBtsSqgnygffGzz6_Ri9HOGd487Gfo5-erH5df25tvX64vL25aJ6gubSct9I71dLAW9x1IzgbCpVSgmGBY4Z5ToTghnFLHMaVMdM5aK7TlvewUO0OfDr7btV9gcBBqXbPZJr_YtDPRenOcCX5jpnhvBOWYE1EN3j8YpPhrhVzMXVxTqDWb2nJBCOVU_qMmO4PxYYzVzC0-O3PBlSaUCqIrdf4fqq4BFu9igNHX-JHgw5GgMgV-l8muOZvr2-_HLDmwLsWcE4yPjyTY7MfDHMbD1F83-_Ewe827p915VPydB_YHNSC12Q</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Kim, Myoun-Su</creator><creator>Cho, Wan-Je</creator><creator>Song, Myoung Chong</creator><creator>Park, Seong-Whan</creator><creator>Kim, Kaeun</creator><creator>Kim, Eunji</creator><creator>Lee, Naryeong</creator><creator>Nam, Sang-Jip</creator><creator>Oh, Ki-Hoon</creator><creator>Yoon, Yeo Joon</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20170117</creationdate><title>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</title><author>Kim, Myoun-Su ; Cho, Wan-Je ; Song, Myoung Chong ; Park, Seong-Whan ; Kim, Kaeun ; Kim, Eunji ; Lee, Naryeong ; Nam, Sang-Jip ; Oh, Ki-Hoon ; Yoon, Yeo Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-96aebc3b2daa0b9e643d14667e7353070b4257411422c4022359caaa58a4b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Fermentation</topic><topic>Insecticides</topic><topic>Ivermectin - analogs & derivatives</topic><topic>Ivermectin - metabolism</topic><topic>Macrolides</topic><topic>Macrolides - isolation & purification</topic><topic>Macrolides - metabolism</topic><topic>Methyltransferases - metabolism</topic><topic>Molecular Structure</topic><topic>Physiological aspects</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><topic>Transferases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Myoun-Su</creatorcontrib><creatorcontrib>Cho, Wan-Je</creatorcontrib><creatorcontrib>Song, Myoung Chong</creatorcontrib><creatorcontrib>Park, Seong-Whan</creatorcontrib><creatorcontrib>Kim, Kaeun</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Lee, Naryeong</creatorcontrib><creatorcontrib>Nam, Sang-Jip</creatorcontrib><creatorcontrib>Oh, Ki-Hoon</creatorcontrib><creatorcontrib>Yoon, Yeo Joon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial cell factories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Myoun-Su</au><au>Cho, Wan-Je</au><au>Song, Myoung Chong</au><au>Park, Seong-Whan</au><au>Kim, Kaeun</au><au>Kim, Eunji</au><au>Lee, Naryeong</au><au>Nam, Sang-Jip</au><au>Oh, Ki-Hoon</au><au>Yoon, Yeo Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis</atitle><jtitle>Microbial cell factories</jtitle><addtitle>Microb Cell Fact</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>9</spage><pages>9-</pages><artnum>9</artnum><issn>1475-2859</issn><eissn>1475-2859</eissn><abstract>Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities.
The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D.
We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28095865</pmid><doi>10.1186/s12934-017-0626-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-2859 |
ispartof | Microbial cell factories, 2017-01, Vol.16 (1), p.9, Article 9 |
issn | 1475-2859 1475-2859 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5240415 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access |
subjects | Anti-Bacterial Agents - biosynthesis Biosynthesis Biosynthetic Pathways - genetics Fermentation Insecticides Ivermectin - analogs & derivatives Ivermectin - metabolism Macrolides Macrolides - isolation & purification Macrolides - metabolism Methyltransferases - metabolism Molecular Structure Physiological aspects Polyketide Synthases - genetics Polyketide Synthases - metabolism Streptomyces - genetics Streptomyces - metabolism Transferases |
title | Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20biosynthesis%20of%20milbemycins%20in%20the%20avermectin%20high-producing%20strain%20Streptomyces%20avermitilis&rft.jtitle=Microbial%20cell%20factories&rft.au=Kim,%20Myoun-Su&rft.date=2017-01-17&rft.volume=16&rft.issue=1&rft.spage=9&rft.pages=9-&rft.artnum=9&rft.issn=1475-2859&rft.eissn=1475-2859&rft_id=info:doi/10.1186/s12934-017-0626-8&rft_dat=%3Cgale_pubme%3EA478122518%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865112426&rft_id=info:pmid/28095865&rft_galeid=A478122518&rfr_iscdi=true |