Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma

The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium ( S . Typhimurium). The major highlig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-01, Vol.7 (1), p.40793-40793, Article 40793
Hauptverfasser: Majumdar, Shamik, Deobagkar-Lele, Mukta, Adiga, Vasista, Raghavan, Abinaya, Wadhwa, Nitin, Ahmed, Syed Moiz, Rananaware, Supriya Rajendra, Chakraborty, Subhashish, Joy, Omana, Nandi, Dipankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40793
container_issue 1
container_start_page 40793
container_title Scientific reports
container_volume 7
creator Majumdar, Shamik
Deobagkar-Lele, Mukta
Adiga, Vasista
Raghavan, Abinaya
Wadhwa, Nitin
Ahmed, Syed Moiz
Rananaware, Supriya Rajendra
Chakraborty, Subhashish
Joy, Omana
Nandi, Dipankar
description The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium ( S . Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4 − CD8 − double negative (DN) thymocytes is observed. Second, CD4 + CD8 + double positive (DP) thymocytes, mainly in the DP1 (CD5 lo CD3 lo ) and DP2 (CD5 hi CD3 int ), but not DP3 (CD5 int CD3 hi ), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24 hi CD3 hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) > DP1, DP2 > DN3, DN4 > DN2 > CD4 +  > CD8 + . Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ −/− mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.
doi_str_mv 10.1038/srep40793
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5238503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899504859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4a5eccc5908b91efb6b1800d820bbe9921166c7b0114443834193ba0332c61c3</originalsourceid><addsrcrecordid>eNplkc1u1DAUhS0EotXQBS-ALLGBSgH_xGnMAgm1_FSqxILZR7bjZFzFdrAdpLwQz8kdpowG8MaW_d1zr89B6Dklbyjh7duc7FyTK8kfoXNGalExztjjk_MZusj5nsASTNZUPkVnrCWSNoyeo583bhhssqE4NeG8ZGPn4rSbXFmxCj32qixJFRcDjgMuu9VHsxYLqM62ZNwvyYURf1OTj8FOk8Lbdd45D9eLxy4M1uyL38Exu3EHFaBUdhanONm81xynxUQTU3Emuj7_7nobik0wVwzVqLxXz9CTQU3ZXjzsG7T99HF7_aW6-_r59vrDXWVq3paqVsIaY4QkrZbUDrrRtCWkbxnR2krJKG0ac6UJpXUNFRzs4FoRzplpqOEb9P4gOy_a296ALUlN3ZycV2ntonLd3y_B7box_ugE460AmQ169SCQ4vfF5tJ5B5aCLcHGJXe0baigQAtAX_6D3sclBfgdUFIKUrdCAvX6QJkUM0Q9HIehpNvn3x3zB_bF6fRH8k_aAFwegDzvQ7PppOV_ar8AUVG-ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899504859</pqid></control><display><type>article</type><title>Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Majumdar, Shamik ; Deobagkar-Lele, Mukta ; Adiga, Vasista ; Raghavan, Abinaya ; Wadhwa, Nitin ; Ahmed, Syed Moiz ; Rananaware, Supriya Rajendra ; Chakraborty, Subhashish ; Joy, Omana ; Nandi, Dipankar</creator><creatorcontrib>Majumdar, Shamik ; Deobagkar-Lele, Mukta ; Adiga, Vasista ; Raghavan, Abinaya ; Wadhwa, Nitin ; Ahmed, Syed Moiz ; Rananaware, Supriya Rajendra ; Chakraborty, Subhashish ; Joy, Omana ; Nandi, Dipankar</creatorcontrib><description>The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium ( S . Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4 − CD8 − double negative (DN) thymocytes is observed. Second, CD4 + CD8 + double positive (DP) thymocytes, mainly in the DP1 (CD5 lo CD3 lo ) and DP2 (CD5 hi CD3 int ), but not DP3 (CD5 int CD3 hi ), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24 hi CD3 hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) &gt; DP1, DP2 &gt; DN3, DN4 &gt; DN2 &gt; CD4 +  &gt; CD8 + . Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ −/− mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep40793</identifier><identifier>PMID: 28091621</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/31 ; 631/250/255/1318 ; 631/80/82/23 ; 64 ; 64/60 ; Animals ; Atrophy ; Biomarkers ; CD4 antigen ; CD8 antigen ; Cell Differentiation - immunology ; Color ; Disease Susceptibility ; Flow cytometry ; Glucocorticoids ; Glucocorticoids - metabolism ; Humanities and Social Sciences ; Immunophenotyping ; Infections ; Inflammation ; Interferon-gamma - metabolism ; Lymphocyte Count ; Maturation ; Mice ; multidisciplinary ; Oral infection ; Rodents ; Salmonella ; Salmonella Infections - immunology ; Salmonella Infections - metabolism ; Salmonella Infections - microbiology ; Salmonella Infections - pathology ; Salmonella typhimurium - physiology ; Science ; Science (multidisciplinary) ; Signal Transduction ; Subpopulations ; T-Lymphocyte Subsets - cytology ; T-Lymphocyte Subsets - immunology ; T-Lymphocyte Subsets - metabolism ; Thymocytes ; Thymocytes - cytology ; Thymocytes - immunology ; Thymocytes - metabolism ; Thymus ; Thymus Gland - immunology ; Thymus Gland - metabolism ; Thymus Gland - pathology</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.40793-40793, Article 40793</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4a5eccc5908b91efb6b1800d820bbe9921166c7b0114443834193ba0332c61c3</citedby><cites>FETCH-LOGICAL-c438t-4a5eccc5908b91efb6b1800d820bbe9921166c7b0114443834193ba0332c61c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28091621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majumdar, Shamik</creatorcontrib><creatorcontrib>Deobagkar-Lele, Mukta</creatorcontrib><creatorcontrib>Adiga, Vasista</creatorcontrib><creatorcontrib>Raghavan, Abinaya</creatorcontrib><creatorcontrib>Wadhwa, Nitin</creatorcontrib><creatorcontrib>Ahmed, Syed Moiz</creatorcontrib><creatorcontrib>Rananaware, Supriya Rajendra</creatorcontrib><creatorcontrib>Chakraborty, Subhashish</creatorcontrib><creatorcontrib>Joy, Omana</creatorcontrib><creatorcontrib>Nandi, Dipankar</creatorcontrib><title>Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium ( S . Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4 − CD8 − double negative (DN) thymocytes is observed. Second, CD4 + CD8 + double positive (DP) thymocytes, mainly in the DP1 (CD5 lo CD3 lo ) and DP2 (CD5 hi CD3 int ), but not DP3 (CD5 int CD3 hi ), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24 hi CD3 hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) &gt; DP1, DP2 &gt; DN3, DN4 &gt; DN2 &gt; CD4 +  &gt; CD8 + . Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ −/− mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.</description><subject>13/1</subject><subject>13/31</subject><subject>631/250/255/1318</subject><subject>631/80/82/23</subject><subject>64</subject><subject>64/60</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Biomarkers</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell Differentiation - immunology</subject><subject>Color</subject><subject>Disease Susceptibility</subject><subject>Flow cytometry</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Immunophenotyping</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Interferon-gamma - metabolism</subject><subject>Lymphocyte Count</subject><subject>Maturation</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Oral infection</subject><subject>Rodents</subject><subject>Salmonella</subject><subject>Salmonella Infections - immunology</subject><subject>Salmonella Infections - metabolism</subject><subject>Salmonella Infections - microbiology</subject><subject>Salmonella Infections - pathology</subject><subject>Salmonella typhimurium - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Subpopulations</subject><subject>T-Lymphocyte Subsets - cytology</subject><subject>T-Lymphocyte Subsets - immunology</subject><subject>T-Lymphocyte Subsets - metabolism</subject><subject>Thymocytes</subject><subject>Thymocytes - cytology</subject><subject>Thymocytes - immunology</subject><subject>Thymocytes - metabolism</subject><subject>Thymus</subject><subject>Thymus Gland - immunology</subject><subject>Thymus Gland - metabolism</subject><subject>Thymus Gland - pathology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc1u1DAUhS0EotXQBS-ALLGBSgH_xGnMAgm1_FSqxILZR7bjZFzFdrAdpLwQz8kdpowG8MaW_d1zr89B6Dklbyjh7duc7FyTK8kfoXNGalExztjjk_MZusj5nsASTNZUPkVnrCWSNoyeo583bhhssqE4NeG8ZGPn4rSbXFmxCj32qixJFRcDjgMuu9VHsxYLqM62ZNwvyYURf1OTj8FOk8Lbdd45D9eLxy4M1uyL38Exu3EHFaBUdhanONm81xynxUQTU3Emuj7_7nobik0wVwzVqLxXz9CTQU3ZXjzsG7T99HF7_aW6-_r59vrDXWVq3paqVsIaY4QkrZbUDrrRtCWkbxnR2krJKG0ac6UJpXUNFRzs4FoRzplpqOEb9P4gOy_a296ALUlN3ZycV2ntonLd3y_B7box_ugE460AmQ169SCQ4vfF5tJ5B5aCLcHGJXe0baigQAtAX_6D3sclBfgdUFIKUrdCAvX6QJkUM0Q9HIehpNvn3x3zB_bF6fRH8k_aAFwegDzvQ7PppOV_ar8AUVG-ww</recordid><startdate>20170116</startdate><enddate>20170116</enddate><creator>Majumdar, Shamik</creator><creator>Deobagkar-Lele, Mukta</creator><creator>Adiga, Vasista</creator><creator>Raghavan, Abinaya</creator><creator>Wadhwa, Nitin</creator><creator>Ahmed, Syed Moiz</creator><creator>Rananaware, Supriya Rajendra</creator><creator>Chakraborty, Subhashish</creator><creator>Joy, Omana</creator><creator>Nandi, Dipankar</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170116</creationdate><title>Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma</title><author>Majumdar, Shamik ; Deobagkar-Lele, Mukta ; Adiga, Vasista ; Raghavan, Abinaya ; Wadhwa, Nitin ; Ahmed, Syed Moiz ; Rananaware, Supriya Rajendra ; Chakraborty, Subhashish ; Joy, Omana ; Nandi, Dipankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4a5eccc5908b91efb6b1800d820bbe9921166c7b0114443834193ba0332c61c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/1</topic><topic>13/31</topic><topic>631/250/255/1318</topic><topic>631/80/82/23</topic><topic>64</topic><topic>64/60</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Biomarkers</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell Differentiation - immunology</topic><topic>Color</topic><topic>Disease Susceptibility</topic><topic>Flow cytometry</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Immunophenotyping</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Interferon-gamma - metabolism</topic><topic>Lymphocyte Count</topic><topic>Maturation</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Oral infection</topic><topic>Rodents</topic><topic>Salmonella</topic><topic>Salmonella Infections - immunology</topic><topic>Salmonella Infections - metabolism</topic><topic>Salmonella Infections - microbiology</topic><topic>Salmonella Infections - pathology</topic><topic>Salmonella typhimurium - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Subpopulations</topic><topic>T-Lymphocyte Subsets - cytology</topic><topic>T-Lymphocyte Subsets - immunology</topic><topic>T-Lymphocyte Subsets - metabolism</topic><topic>Thymocytes</topic><topic>Thymocytes - cytology</topic><topic>Thymocytes - immunology</topic><topic>Thymocytes - metabolism</topic><topic>Thymus</topic><topic>Thymus Gland - immunology</topic><topic>Thymus Gland - metabolism</topic><topic>Thymus Gland - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumdar, Shamik</creatorcontrib><creatorcontrib>Deobagkar-Lele, Mukta</creatorcontrib><creatorcontrib>Adiga, Vasista</creatorcontrib><creatorcontrib>Raghavan, Abinaya</creatorcontrib><creatorcontrib>Wadhwa, Nitin</creatorcontrib><creatorcontrib>Ahmed, Syed Moiz</creatorcontrib><creatorcontrib>Rananaware, Supriya Rajendra</creatorcontrib><creatorcontrib>Chakraborty, Subhashish</creatorcontrib><creatorcontrib>Joy, Omana</creatorcontrib><creatorcontrib>Nandi, Dipankar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumdar, Shamik</au><au>Deobagkar-Lele, Mukta</au><au>Adiga, Vasista</au><au>Raghavan, Abinaya</au><au>Wadhwa, Nitin</au><au>Ahmed, Syed Moiz</au><au>Rananaware, Supriya Rajendra</au><au>Chakraborty, Subhashish</au><au>Joy, Omana</au><au>Nandi, Dipankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>40793</spage><epage>40793</epage><pages>40793-40793</pages><artnum>40793</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium ( S . Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4 − CD8 − double negative (DN) thymocytes is observed. Second, CD4 + CD8 + double positive (DP) thymocytes, mainly in the DP1 (CD5 lo CD3 lo ) and DP2 (CD5 hi CD3 int ), but not DP3 (CD5 int CD3 hi ), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24 hi CD3 hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) &gt; DP1, DP2 &gt; DN3, DN4 &gt; DN2 &gt; CD4 +  &gt; CD8 + . Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ −/− mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28091621</pmid><doi>10.1038/srep40793</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-01, Vol.7 (1), p.40793-40793, Article 40793
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5238503
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 13/1
13/31
631/250/255/1318
631/80/82/23
64
64/60
Animals
Atrophy
Biomarkers
CD4 antigen
CD8 antigen
Cell Differentiation - immunology
Color
Disease Susceptibility
Flow cytometry
Glucocorticoids
Glucocorticoids - metabolism
Humanities and Social Sciences
Immunophenotyping
Infections
Inflammation
Interferon-gamma - metabolism
Lymphocyte Count
Maturation
Mice
multidisciplinary
Oral infection
Rodents
Salmonella
Salmonella Infections - immunology
Salmonella Infections - metabolism
Salmonella Infections - microbiology
Salmonella Infections - pathology
Salmonella typhimurium - physiology
Science
Science (multidisciplinary)
Signal Transduction
Subpopulations
T-Lymphocyte Subsets - cytology
T-Lymphocyte Subsets - immunology
T-Lymphocyte Subsets - metabolism
Thymocytes
Thymocytes - cytology
Thymocytes - immunology
Thymocytes - metabolism
Thymus
Thymus Gland - immunology
Thymus Gland - metabolism
Thymus Gland - pathology
title Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20susceptibility%20and%20maturation%20of%20thymocyte%20subsets%20during%20Salmonella%20Typhimurium%20infection:%20insights%20on%20the%20roles%20of%20glucocorticoids%20and%20Interferon-gamma&rft.jtitle=Scientific%20reports&rft.au=Majumdar,%20Shamik&rft.date=2017-01-16&rft.volume=7&rft.issue=1&rft.spage=40793&rft.epage=40793&rft.pages=40793-40793&rft.artnum=40793&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep40793&rft_dat=%3Cproquest_pubme%3E1899504859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899504859&rft_id=info:pmid/28091621&rfr_iscdi=true