Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet

Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids in health and disease 2017-01, Vol.16 (1), p.9-9, Article 9
Hauptverfasser: Cui, Yingjie, Hou, Pengbo, Li, Fahui, Liu, Qinghua, Qin, Shucun, Zhou, Guanghai, Xu, Xuelian, Si, Yanhong, Guo, Shoudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 9
container_title Lipids in health and disease
container_volume 16
creator Cui, Yingjie
Hou, Pengbo
Li, Fahui
Liu, Qinghua
Qin, Shucun
Zhou, Guanghai
Xu, Xuelian
Si, Yanhong
Guo, Shoudong
description Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [ H]-cholesterol transfer from [ H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.
doi_str_mv 10.1186/s12944-016-0393-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5237507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477550159</galeid><sourcerecordid>A477550159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-2aa087d2f225bf494570bb5c79faa44dffc7b56b5c060017cf73d2f7aee220663</originalsourceid><addsrcrecordid>eNptUk1r3TAQFKWhSdP-gF6KoJdenEqyZNmXQgjpBwRKIIXehCyvnhVsy5XsB_n3XfOSNClFB0mrmVnt7hDyjrMzzuvqU-aikbJgvCpY2ZSFeEFOuNRVoTj_9fLJ-Zi8zvmWMcF0Vb0ix6JmdS2YOiHpeoXkYAkTDeOc4h4yHa1Lce7tDmiCPaQM1PVxgLxAigNdkp3yHNNCkWTnOIQ5InMBvF4WHfjgAkwLHYMD6qGjlvZh1xfeLrQLsLwhR94OGd7e76fk55fLm4tvxdWPr98vzq8KJxu5FMJaVutOeCFU6zGkNGtb5XTjrZWy897pVlUYYRVjXDuvS0RrCyAEq6rylHw-6M5rO0Ln8E_JDmZOYbTpzkQbzPOXKfRmF_dGiVIrplHg471Air9XLN-MITsYBjtBXLPBEXAla1FvuT78A72Na5qwvA2lWKNFo_6idnYAEyYfMa_bRM251FopxlWDqLP_oHB1gC2NEzYY488I_EDAseWcwD_WyJnZjGIORjFoFLMZxQjkvH_anEfGgzPKP59nuoY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865097295</pqid></control><display><type>article</type><title>Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cui, Yingjie ; Hou, Pengbo ; Li, Fahui ; Liu, Qinghua ; Qin, Shucun ; Zhou, Guanghai ; Xu, Xuelian ; Si, Yanhong ; Guo, Shoudong</creator><creatorcontrib>Cui, Yingjie ; Hou, Pengbo ; Li, Fahui ; Liu, Qinghua ; Qin, Shucun ; Zhou, Guanghai ; Xu, Xuelian ; Si, Yanhong ; Guo, Shoudong</creatorcontrib><description>Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [ H]-cholesterol transfer from [ H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.</description><identifier>ISSN: 1476-511X</identifier><identifier>EISSN: 1476-511X</identifier><identifier>DOI: 10.1186/s12944-016-0393-2</identifier><identifier>PMID: 28088205</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Antioxidants ; Apolipoprotein A-I - metabolism ; Apolipoproteins ; Apolipoproteins E - genetics ; Apolipoproteins E - metabolism ; ATP Binding Cassette Transporter 1 - metabolism ; ATP Binding Cassette Transporter, Sub-Family G, Member 1 - metabolism ; Biological Transport - drug effects ; Cell Line ; Cholesterol - blood ; Cholesterol - metabolism ; Diet, High-Fat - adverse effects ; Dosage and administration ; Health aspects ; Ketogenic diet ; Lipoproteins, HDL - metabolism ; Macrophages ; Macrophages - drug effects ; Macrophages - metabolism ; Male ; Mice, Mutant Strains ; Physiological aspects ; Quercetin ; Quercetin - pharmacology</subject><ispartof>Lipids in health and disease, 2017-01, Vol.16 (1), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-2aa087d2f225bf494570bb5c79faa44dffc7b56b5c060017cf73d2f7aee220663</citedby><cites>FETCH-LOGICAL-c494t-2aa087d2f225bf494570bb5c79faa44dffc7b56b5c060017cf73d2f7aee220663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237507/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237507/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28088205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Yingjie</creatorcontrib><creatorcontrib>Hou, Pengbo</creatorcontrib><creatorcontrib>Li, Fahui</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><creatorcontrib>Qin, Shucun</creatorcontrib><creatorcontrib>Zhou, Guanghai</creatorcontrib><creatorcontrib>Xu, Xuelian</creatorcontrib><creatorcontrib>Si, Yanhong</creatorcontrib><creatorcontrib>Guo, Shoudong</creatorcontrib><title>Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet</title><title>Lipids in health and disease</title><addtitle>Lipids Health Dis</addtitle><description>Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [ H]-cholesterol transfer from [ H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.</description><subject>Animals</subject><subject>Antioxidants</subject><subject>Apolipoprotein A-I - metabolism</subject><subject>Apolipoproteins</subject><subject>Apolipoproteins E - genetics</subject><subject>Apolipoproteins E - metabolism</subject><subject>ATP Binding Cassette Transporter 1 - metabolism</subject><subject>ATP Binding Cassette Transporter, Sub-Family G, Member 1 - metabolism</subject><subject>Biological Transport - drug effects</subject><subject>Cell Line</subject><subject>Cholesterol - blood</subject><subject>Cholesterol - metabolism</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Dosage and administration</subject><subject>Health aspects</subject><subject>Ketogenic diet</subject><subject>Lipoproteins, HDL - metabolism</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Mice, Mutant Strains</subject><subject>Physiological aspects</subject><subject>Quercetin</subject><subject>Quercetin - pharmacology</subject><issn>1476-511X</issn><issn>1476-511X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUk1r3TAQFKWhSdP-gF6KoJdenEqyZNmXQgjpBwRKIIXehCyvnhVsy5XsB_n3XfOSNClFB0mrmVnt7hDyjrMzzuvqU-aikbJgvCpY2ZSFeEFOuNRVoTj_9fLJ-Zi8zvmWMcF0Vb0ix6JmdS2YOiHpeoXkYAkTDeOc4h4yHa1Lce7tDmiCPaQM1PVxgLxAigNdkp3yHNNCkWTnOIQ5InMBvF4WHfjgAkwLHYMD6qGjlvZh1xfeLrQLsLwhR94OGd7e76fk55fLm4tvxdWPr98vzq8KJxu5FMJaVutOeCFU6zGkNGtb5XTjrZWy897pVlUYYRVjXDuvS0RrCyAEq6rylHw-6M5rO0Ln8E_JDmZOYbTpzkQbzPOXKfRmF_dGiVIrplHg471Air9XLN-MITsYBjtBXLPBEXAla1FvuT78A72Na5qwvA2lWKNFo_6idnYAEyYfMa_bRM251FopxlWDqLP_oHB1gC2NEzYY488I_EDAseWcwD_WyJnZjGIORjFoFLMZxQjkvH_anEfGgzPKP59nuoY</recordid><startdate>20170114</startdate><enddate>20170114</enddate><creator>Cui, Yingjie</creator><creator>Hou, Pengbo</creator><creator>Li, Fahui</creator><creator>Liu, Qinghua</creator><creator>Qin, Shucun</creator><creator>Zhou, Guanghai</creator><creator>Xu, Xuelian</creator><creator>Si, Yanhong</creator><creator>Guo, Shoudong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170114</creationdate><title>Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet</title><author>Cui, Yingjie ; Hou, Pengbo ; Li, Fahui ; Liu, Qinghua ; Qin, Shucun ; Zhou, Guanghai ; Xu, Xuelian ; Si, Yanhong ; Guo, Shoudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-2aa087d2f225bf494570bb5c79faa44dffc7b56b5c060017cf73d2f7aee220663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Apolipoprotein A-I - metabolism</topic><topic>Apolipoproteins</topic><topic>Apolipoproteins E - genetics</topic><topic>Apolipoproteins E - metabolism</topic><topic>ATP Binding Cassette Transporter 1 - metabolism</topic><topic>ATP Binding Cassette Transporter, Sub-Family G, Member 1 - metabolism</topic><topic>Biological Transport - drug effects</topic><topic>Cell Line</topic><topic>Cholesterol - blood</topic><topic>Cholesterol - metabolism</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Dosage and administration</topic><topic>Health aspects</topic><topic>Ketogenic diet</topic><topic>Lipoproteins, HDL - metabolism</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Mice, Mutant Strains</topic><topic>Physiological aspects</topic><topic>Quercetin</topic><topic>Quercetin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yingjie</creatorcontrib><creatorcontrib>Hou, Pengbo</creatorcontrib><creatorcontrib>Li, Fahui</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><creatorcontrib>Qin, Shucun</creatorcontrib><creatorcontrib>Zhou, Guanghai</creatorcontrib><creatorcontrib>Xu, Xuelian</creatorcontrib><creatorcontrib>Si, Yanhong</creatorcontrib><creatorcontrib>Guo, Shoudong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lipids in health and disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yingjie</au><au>Hou, Pengbo</au><au>Li, Fahui</au><au>Liu, Qinghua</au><au>Qin, Shucun</au><au>Zhou, Guanghai</au><au>Xu, Xuelian</au><au>Si, Yanhong</au><au>Guo, Shoudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet</atitle><jtitle>Lipids in health and disease</jtitle><addtitle>Lipids Health Dis</addtitle><date>2017-01-14</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1476-511X</issn><eissn>1476-511X</eissn><abstract>Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to reduce hyperlipidaemia and atherosclerotic lesion formation. Reverse cholesterol transport (RCT) plays a crucial role in exporting cholesterol from peripheral cells, which is one mechanism utilized in the prevention and treatment of atherosclerosis. The aim of this study is to investigate whether quercetin reduces lipid accumulation by improving RCT in vivo. Apolipoprotein E-deficient mice fed a high-fat diet were used to investigate the effect of quercetin on RCT by an isotope tracing method, and the underlying mechanisms were clarified by molecular techniques. These novel results demonstrated that quercetin significantly improved [ H]-cholesterol transfer from [ H]-cholesterol-loaded macrophages to the plasma (approximately 34% increase), liver (30% increase), and bile (50% increase) and finally to the feces (approximately 40% increase) for excretion in apolipoprotein E-deficient mice fed a high-fat diet. Furthermore, quercetin markedly increased the cholesterol accepting ability of plasma and high-density lipoprotein (HDL) and dramatically decreased the content of malondialdehyde in plasma and oxidized phosphocholine carried by HDL. Therefore, the underlying mechanisms of quercetin in improving RCT may be partially due to the elevated cholesterol accepting ability of HDL, the increased expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and G1, and the improved antioxidant activity of HDL. Quercetin accelerates RCT in an atherosclerosis model, which is helpful in clarifying the lipid-lowering effect of quercetin.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28088205</pmid><doi>10.1186/s12944-016-0393-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-511X
ispartof Lipids in health and disease, 2017-01, Vol.16 (1), p.9-9, Article 9
issn 1476-511X
1476-511X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5237507
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antioxidants
Apolipoprotein A-I - metabolism
Apolipoproteins
Apolipoproteins E - genetics
Apolipoproteins E - metabolism
ATP Binding Cassette Transporter 1 - metabolism
ATP Binding Cassette Transporter, Sub-Family G, Member 1 - metabolism
Biological Transport - drug effects
Cell Line
Cholesterol - blood
Cholesterol - metabolism
Diet, High-Fat - adverse effects
Dosage and administration
Health aspects
Ketogenic diet
Lipoproteins, HDL - metabolism
Macrophages
Macrophages - drug effects
Macrophages - metabolism
Male
Mice, Mutant Strains
Physiological aspects
Quercetin
Quercetin - pharmacology
title Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quercetin%20improves%20macrophage%20reverse%20cholesterol%20transport%20in%20apolipoprotein%20E-deficient%20mice%20fed%20a%20high-fat%20diet&rft.jtitle=Lipids%20in%20health%20and%20disease&rft.au=Cui,%20Yingjie&rft.date=2017-01-14&rft.volume=16&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1476-511X&rft.eissn=1476-511X&rft_id=info:doi/10.1186/s12944-016-0393-2&rft_dat=%3Cgale_pubme%3EA477550159%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865097295&rft_id=info:pmid/28088205&rft_galeid=A477550159&rfr_iscdi=true