Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues
Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-12, Vol.64 (5), p.982-992 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 992 |
---|---|
container_issue | 5 |
container_start_page | 982 |
container_title | Molecular cell |
container_volume | 64 |
creator | Krautkramer, Kimberly A. Kreznar, Julia H. Romano, Kymberleigh A. Vivas, Eugenio I. Barrett-Wilt, Gregory A. Rabaglia, Mary E. Keller, Mark P. Attie, Alan D. Rey, Federico E. Denu, John M. |
description | Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
[Display omitted]
•Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects
The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues. |
doi_str_mv | 10.1016/j.molcel.2016.10.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5227652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516306700</els_id><sourcerecordid>2000193552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</originalsourceid><addsrcrecordid>eNqNUUFvFCEYJUZja_UfGMPRy6zAwMxwMTFtbZt0o4d68kAY5mNlw8AKbBP_vUx22-rFeAI-3ve-972H0FtKVpTQ7sN2NUdvwK9YfdXSijDxDJ1SIvuG044_P95Z34kT9CrnLSGUi0G-RCesHwbJBT1F3y8clGbtTIqji0Xjm1AgaVNcDBmvYXK6AL7ycdQeX-7cBgIUZ_DXFDdJz7MLG-wCXu99cTsP-Drmgu9cznvIr9ELq32GN8fzDH37fHl3ft3cfrm6Of902xjB-9IYCZM0ZhysNHS0HW8Zt2aivdTMMCGJncZhqNJ70G3Lxk7afmyBc26pFYa2Z-jjgXe3H2eYDISStFe75Gadfqmonfr7J7gfahPvlWCLOawSvD8SpPizCi9qdrla63WAuM-KkWqdbMV_QOnAeSt6whcoP0CrtzknsI-KKFFLhGqrDhGqJcKlWiOsbe_-3Oax6SGzp3WhenrvIKlsHARTs0pgipqi-_eE3yrJsPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844357042</pqid></control><display><type>article</type><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</creator><creatorcontrib>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</creatorcontrib><description>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
[Display omitted]
•Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects
The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.10.025</identifier><identifier>PMID: 27889451</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylation ; Adipose Tissue - enzymology ; Adipose Tissue - metabolism ; Animals ; chromatin ; Colon - enzymology ; Colon - metabolism ; diet ; Diet, Western ; digestive system ; disease resistance ; DNA Methylation ; enzymes ; Epigenesis, Genetic ; epigenetic ; epigenetics ; Fatty Acids, Volatile - metabolism ; fermentation ; Gastrointestinal Microbiome - physiology ; germ-free animals ; gut microbiota ; histone acetylation ; histone methylation ; histone proteomics ; histone PTM ; histones ; Histones - genetics ; Histones - metabolism ; intestinal microorganisms ; Liver - enzymology ; Liver - metabolism ; Male ; metabolites ; methylation ; Mice ; Mice, Inbred C57BL ; microbial colonization ; microbiome ; Organ Specificity ; SCFA ; short chain fatty acids ; short-chain fatty acid ; transcription (genetics)</subject><ispartof>Molecular cell, 2016-12, Vol.64 (5), p.982-992</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</citedby><cites>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.10.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27889451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krautkramer, Kimberly A.</creatorcontrib><creatorcontrib>Kreznar, Julia H.</creatorcontrib><creatorcontrib>Romano, Kymberleigh A.</creatorcontrib><creatorcontrib>Vivas, Eugenio I.</creatorcontrib><creatorcontrib>Barrett-Wilt, Gregory A.</creatorcontrib><creatorcontrib>Rabaglia, Mary E.</creatorcontrib><creatorcontrib>Keller, Mark P.</creatorcontrib><creatorcontrib>Attie, Alan D.</creatorcontrib><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
[Display omitted]
•Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects
The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</description><subject>acetylation</subject><subject>Adipose Tissue - enzymology</subject><subject>Adipose Tissue - metabolism</subject><subject>Animals</subject><subject>chromatin</subject><subject>Colon - enzymology</subject><subject>Colon - metabolism</subject><subject>diet</subject><subject>Diet, Western</subject><subject>digestive system</subject><subject>disease resistance</subject><subject>DNA Methylation</subject><subject>enzymes</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic</subject><subject>epigenetics</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>fermentation</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>germ-free animals</subject><subject>gut microbiota</subject><subject>histone acetylation</subject><subject>histone methylation</subject><subject>histone proteomics</subject><subject>histone PTM</subject><subject>histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>intestinal microorganisms</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>metabolites</subject><subject>methylation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microbial colonization</subject><subject>microbiome</subject><subject>Organ Specificity</subject><subject>SCFA</subject><subject>short chain fatty acids</subject><subject>short-chain fatty acid</subject><subject>transcription (genetics)</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUFvFCEYJUZja_UfGMPRy6zAwMxwMTFtbZt0o4d68kAY5mNlw8AKbBP_vUx22-rFeAI-3ve-972H0FtKVpTQ7sN2NUdvwK9YfdXSijDxDJ1SIvuG044_P95Z34kT9CrnLSGUi0G-RCesHwbJBT1F3y8clGbtTIqji0Xjm1AgaVNcDBmvYXK6AL7ycdQeX-7cBgIUZ_DXFDdJz7MLG-wCXu99cTsP-Drmgu9cznvIr9ELq32GN8fzDH37fHl3ft3cfrm6Of902xjB-9IYCZM0ZhysNHS0HW8Zt2aivdTMMCGJncZhqNJ70G3Lxk7afmyBc26pFYa2Z-jjgXe3H2eYDISStFe75Gadfqmonfr7J7gfahPvlWCLOawSvD8SpPizCi9qdrla63WAuM-KkWqdbMV_QOnAeSt6whcoP0CrtzknsI-KKFFLhGqrDhGqJcKlWiOsbe_-3Oax6SGzp3WhenrvIKlsHARTs0pgipqi-_eE3yrJsPo</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Krautkramer, Kimberly A.</creator><creator>Kreznar, Julia H.</creator><creator>Romano, Kymberleigh A.</creator><creator>Vivas, Eugenio I.</creator><creator>Barrett-Wilt, Gregory A.</creator><creator>Rabaglia, Mary E.</creator><creator>Keller, Mark P.</creator><creator>Attie, Alan D.</creator><creator>Rey, Federico E.</creator><creator>Denu, John M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><author>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetylation</topic><topic>Adipose Tissue - enzymology</topic><topic>Adipose Tissue - metabolism</topic><topic>Animals</topic><topic>chromatin</topic><topic>Colon - enzymology</topic><topic>Colon - metabolism</topic><topic>diet</topic><topic>Diet, Western</topic><topic>digestive system</topic><topic>disease resistance</topic><topic>DNA Methylation</topic><topic>enzymes</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic</topic><topic>epigenetics</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>fermentation</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>germ-free animals</topic><topic>gut microbiota</topic><topic>histone acetylation</topic><topic>histone methylation</topic><topic>histone proteomics</topic><topic>histone PTM</topic><topic>histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>intestinal microorganisms</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>metabolites</topic><topic>methylation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microbial colonization</topic><topic>microbiome</topic><topic>Organ Specificity</topic><topic>SCFA</topic><topic>short chain fatty acids</topic><topic>short-chain fatty acid</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krautkramer, Kimberly A.</creatorcontrib><creatorcontrib>Kreznar, Julia H.</creatorcontrib><creatorcontrib>Romano, Kymberleigh A.</creatorcontrib><creatorcontrib>Vivas, Eugenio I.</creatorcontrib><creatorcontrib>Barrett-Wilt, Gregory A.</creatorcontrib><creatorcontrib>Rabaglia, Mary E.</creatorcontrib><creatorcontrib>Keller, Mark P.</creatorcontrib><creatorcontrib>Attie, Alan D.</creatorcontrib><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krautkramer, Kimberly A.</au><au>Kreznar, Julia H.</au><au>Romano, Kymberleigh A.</au><au>Vivas, Eugenio I.</au><au>Barrett-Wilt, Gregory A.</au><au>Rabaglia, Mary E.</au><au>Keller, Mark P.</au><au>Attie, Alan D.</au><au>Rey, Federico E.</au><au>Denu, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>64</volume><issue>5</issue><spage>982</spage><epage>992</epage><pages>982-992</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
[Display omitted]
•Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects
The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27889451</pmid><doi>10.1016/j.molcel.2016.10.025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-12, Vol.64 (5), p.982-992 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5227652 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | acetylation Adipose Tissue - enzymology Adipose Tissue - metabolism Animals chromatin Colon - enzymology Colon - metabolism diet Diet, Western digestive system disease resistance DNA Methylation enzymes Epigenesis, Genetic epigenetic epigenetics Fatty Acids, Volatile - metabolism fermentation Gastrointestinal Microbiome - physiology germ-free animals gut microbiota histone acetylation histone methylation histone proteomics histone PTM histones Histones - genetics Histones - metabolism intestinal microorganisms Liver - enzymology Liver - metabolism Male metabolites methylation Mice Mice, Inbred C57BL microbial colonization microbiome Organ Specificity SCFA short chain fatty acids short-chain fatty acid transcription (genetics) |
title | Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diet-Microbiota%20Interactions%20Mediate%20Global%20Epigenetic%20Programming%20in%20Multiple%20Host%20Tissues&rft.jtitle=Molecular%20cell&rft.au=Krautkramer,%20Kimberly%20A.&rft.date=2016-12-01&rft.volume=64&rft.issue=5&rft.spage=982&rft.epage=992&rft.pages=982-992&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.10.025&rft_dat=%3Cproquest_pubme%3E2000193552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844357042&rft_id=info:pmid/27889451&rft_els_id=S1097276516306700&rfr_iscdi=true |