Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues

Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-12, Vol.64 (5), p.982-992
Hauptverfasser: Krautkramer, Kimberly A., Kreznar, Julia H., Romano, Kymberleigh A., Vivas, Eugenio I., Barrett-Wilt, Gregory A., Rabaglia, Mary E., Keller, Mark P., Attie, Alan D., Rey, Federico E., Denu, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 5
container_start_page 982
container_title Molecular cell
container_volume 64
creator Krautkramer, Kimberly A.
Kreznar, Julia H.
Romano, Kymberleigh A.
Vivas, Eugenio I.
Barrett-Wilt, Gregory A.
Rabaglia, Mary E.
Keller, Mark P.
Attie, Alan D.
Rey, Federico E.
Denu, John M.
description Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. [Display omitted] •Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.
doi_str_mv 10.1016/j.molcel.2016.10.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5227652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516306700</els_id><sourcerecordid>2000193552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</originalsourceid><addsrcrecordid>eNqNUUFvFCEYJUZja_UfGMPRy6zAwMxwMTFtbZt0o4d68kAY5mNlw8AKbBP_vUx22-rFeAI-3ve-972H0FtKVpTQ7sN2NUdvwK9YfdXSijDxDJ1SIvuG044_P95Z34kT9CrnLSGUi0G-RCesHwbJBT1F3y8clGbtTIqji0Xjm1AgaVNcDBmvYXK6AL7ycdQeX-7cBgIUZ_DXFDdJz7MLG-wCXu99cTsP-Drmgu9cznvIr9ELq32GN8fzDH37fHl3ft3cfrm6Of902xjB-9IYCZM0ZhysNHS0HW8Zt2aivdTMMCGJncZhqNJ70G3Lxk7afmyBc26pFYa2Z-jjgXe3H2eYDISStFe75Gadfqmonfr7J7gfahPvlWCLOawSvD8SpPizCi9qdrla63WAuM-KkWqdbMV_QOnAeSt6whcoP0CrtzknsI-KKFFLhGqrDhGqJcKlWiOsbe_-3Oax6SGzp3WhenrvIKlsHARTs0pgipqi-_eE3yrJsPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844357042</pqid></control><display><type>article</type><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</creator><creatorcontrib>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</creatorcontrib><description>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. [Display omitted] •Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.10.025</identifier><identifier>PMID: 27889451</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetylation ; Adipose Tissue - enzymology ; Adipose Tissue - metabolism ; Animals ; chromatin ; Colon - enzymology ; Colon - metabolism ; diet ; Diet, Western ; digestive system ; disease resistance ; DNA Methylation ; enzymes ; Epigenesis, Genetic ; epigenetic ; epigenetics ; Fatty Acids, Volatile - metabolism ; fermentation ; Gastrointestinal Microbiome - physiology ; germ-free animals ; gut microbiota ; histone acetylation ; histone methylation ; histone proteomics ; histone PTM ; histones ; Histones - genetics ; Histones - metabolism ; intestinal microorganisms ; Liver - enzymology ; Liver - metabolism ; Male ; metabolites ; methylation ; Mice ; Mice, Inbred C57BL ; microbial colonization ; microbiome ; Organ Specificity ; SCFA ; short chain fatty acids ; short-chain fatty acid ; transcription (genetics)</subject><ispartof>Molecular cell, 2016-12, Vol.64 (5), p.982-992</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</citedby><cites>FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.10.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27889451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krautkramer, Kimberly A.</creatorcontrib><creatorcontrib>Kreznar, Julia H.</creatorcontrib><creatorcontrib>Romano, Kymberleigh A.</creatorcontrib><creatorcontrib>Vivas, Eugenio I.</creatorcontrib><creatorcontrib>Barrett-Wilt, Gregory A.</creatorcontrib><creatorcontrib>Rabaglia, Mary E.</creatorcontrib><creatorcontrib>Keller, Mark P.</creatorcontrib><creatorcontrib>Attie, Alan D.</creatorcontrib><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. [Display omitted] •Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</description><subject>acetylation</subject><subject>Adipose Tissue - enzymology</subject><subject>Adipose Tissue - metabolism</subject><subject>Animals</subject><subject>chromatin</subject><subject>Colon - enzymology</subject><subject>Colon - metabolism</subject><subject>diet</subject><subject>Diet, Western</subject><subject>digestive system</subject><subject>disease resistance</subject><subject>DNA Methylation</subject><subject>enzymes</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic</subject><subject>epigenetics</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>fermentation</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>germ-free animals</subject><subject>gut microbiota</subject><subject>histone acetylation</subject><subject>histone methylation</subject><subject>histone proteomics</subject><subject>histone PTM</subject><subject>histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>intestinal microorganisms</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>metabolites</subject><subject>methylation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microbial colonization</subject><subject>microbiome</subject><subject>Organ Specificity</subject><subject>SCFA</subject><subject>short chain fatty acids</subject><subject>short-chain fatty acid</subject><subject>transcription (genetics)</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUFvFCEYJUZja_UfGMPRy6zAwMxwMTFtbZt0o4d68kAY5mNlw8AKbBP_vUx22-rFeAI-3ve-972H0FtKVpTQ7sN2NUdvwK9YfdXSijDxDJ1SIvuG044_P95Z34kT9CrnLSGUi0G-RCesHwbJBT1F3y8clGbtTIqji0Xjm1AgaVNcDBmvYXK6AL7ycdQeX-7cBgIUZ_DXFDdJz7MLG-wCXu99cTsP-Drmgu9cznvIr9ELq32GN8fzDH37fHl3ft3cfrm6Of902xjB-9IYCZM0ZhysNHS0HW8Zt2aivdTMMCGJncZhqNJ70G3Lxk7afmyBc26pFYa2Z-jjgXe3H2eYDISStFe75Gadfqmonfr7J7gfahPvlWCLOawSvD8SpPizCi9qdrla63WAuM-KkWqdbMV_QOnAeSt6whcoP0CrtzknsI-KKFFLhGqrDhGqJcKlWiOsbe_-3Oax6SGzp3WhenrvIKlsHARTs0pgipqi-_eE3yrJsPo</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Krautkramer, Kimberly A.</creator><creator>Kreznar, Julia H.</creator><creator>Romano, Kymberleigh A.</creator><creator>Vivas, Eugenio I.</creator><creator>Barrett-Wilt, Gregory A.</creator><creator>Rabaglia, Mary E.</creator><creator>Keller, Mark P.</creator><creator>Attie, Alan D.</creator><creator>Rey, Federico E.</creator><creator>Denu, John M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</title><author>Krautkramer, Kimberly A. ; Kreznar, Julia H. ; Romano, Kymberleigh A. ; Vivas, Eugenio I. ; Barrett-Wilt, Gregory A. ; Rabaglia, Mary E. ; Keller, Mark P. ; Attie, Alan D. ; Rey, Federico E. ; Denu, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-c9ed9ccb8f9c1bf64324fcd179a2c2590fdb881457ea332b69f7b3e444f1f5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetylation</topic><topic>Adipose Tissue - enzymology</topic><topic>Adipose Tissue - metabolism</topic><topic>Animals</topic><topic>chromatin</topic><topic>Colon - enzymology</topic><topic>Colon - metabolism</topic><topic>diet</topic><topic>Diet, Western</topic><topic>digestive system</topic><topic>disease resistance</topic><topic>DNA Methylation</topic><topic>enzymes</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic</topic><topic>epigenetics</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>fermentation</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>germ-free animals</topic><topic>gut microbiota</topic><topic>histone acetylation</topic><topic>histone methylation</topic><topic>histone proteomics</topic><topic>histone PTM</topic><topic>histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>intestinal microorganisms</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>metabolites</topic><topic>methylation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microbial colonization</topic><topic>microbiome</topic><topic>Organ Specificity</topic><topic>SCFA</topic><topic>short chain fatty acids</topic><topic>short-chain fatty acid</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krautkramer, Kimberly A.</creatorcontrib><creatorcontrib>Kreznar, Julia H.</creatorcontrib><creatorcontrib>Romano, Kymberleigh A.</creatorcontrib><creatorcontrib>Vivas, Eugenio I.</creatorcontrib><creatorcontrib>Barrett-Wilt, Gregory A.</creatorcontrib><creatorcontrib>Rabaglia, Mary E.</creatorcontrib><creatorcontrib>Keller, Mark P.</creatorcontrib><creatorcontrib>Attie, Alan D.</creatorcontrib><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krautkramer, Kimberly A.</au><au>Kreznar, Julia H.</au><au>Romano, Kymberleigh A.</au><au>Vivas, Eugenio I.</au><au>Barrett-Wilt, Gregory A.</au><au>Rabaglia, Mary E.</au><au>Keller, Mark P.</au><au>Attie, Alan D.</au><au>Rey, Federico E.</au><au>Denu, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>64</volume><issue>5</issue><spage>982</spage><epage>992</epage><pages>982-992</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health. [Display omitted] •Gut microbiota alter host histone acetylation and methylation in multiple tissues•Western diet suppresses microbiota-driven SCFA production and chromatin effects•SCFAs recapitulate microbiota-driven chromatin and transcriptional effects The gut microbiota is an important metabolic organ and associated with a number of robust metabolic and immunologic host phenotypes. Krautkramer et al. report that diet-gut microbiota interactions mediate host epigenetic programming in a variety of host tissues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27889451</pmid><doi>10.1016/j.molcel.2016.10.025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-12, Vol.64 (5), p.982-992
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5227652
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects acetylation
Adipose Tissue - enzymology
Adipose Tissue - metabolism
Animals
chromatin
Colon - enzymology
Colon - metabolism
diet
Diet, Western
digestive system
disease resistance
DNA Methylation
enzymes
Epigenesis, Genetic
epigenetic
epigenetics
Fatty Acids, Volatile - metabolism
fermentation
Gastrointestinal Microbiome - physiology
germ-free animals
gut microbiota
histone acetylation
histone methylation
histone proteomics
histone PTM
histones
Histones - genetics
Histones - metabolism
intestinal microorganisms
Liver - enzymology
Liver - metabolism
Male
metabolites
methylation
Mice
Mice, Inbred C57BL
microbial colonization
microbiome
Organ Specificity
SCFA
short chain fatty acids
short-chain fatty acid
transcription (genetics)
title Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diet-Microbiota%20Interactions%20Mediate%20Global%20Epigenetic%20Programming%20in%20Multiple%20Host%20Tissues&rft.jtitle=Molecular%20cell&rft.au=Krautkramer,%20Kimberly%20A.&rft.date=2016-12-01&rft.volume=64&rft.issue=5&rft.spage=982&rft.epage=992&rft.pages=982-992&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.10.025&rft_dat=%3Cproquest_pubme%3E2000193552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844357042&rft_id=info:pmid/27889451&rft_els_id=S1097276516306700&rfr_iscdi=true