Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans

Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2017-01, Vol.205 (1), p.201-219
Hauptverfasser: Yang, Dong-Hoon, Jung, Kwang-Woo, Bang, Soohyun, Lee, Jang-Won, Song, Min-Hee, Floyd-Averette, Anna, Festa, Richard A, Ianiri, Giuseppe, Idnurm, Alexander, Thiele, Dennis J, Heitman, Joseph, Bahn, Yong-Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 201
container_title Genetics (Austin)
container_volume 205
creator Yang, Dong-Hoon
Jung, Kwang-Woo
Bang, Soohyun
Lee, Jang-Won
Song, Min-Hee
Floyd-Averette, Anna
Festa, Richard A
Ianiri, Giuseppe
Idnurm, Alexander
Thiele, Dennis J
Heitman, Joseph
Bahn, Yong-Sun
description Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.
doi_str_mv 10.1534/genetics.116.190595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5223503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4306513671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f8e6d8e296ced5add610a501b4fdb9e8d7ec5fa9282b2b50c5efcf63ab5f971b3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqXwC5CQJS5cdvFH7NgXJLQCilQ-BOVsOc4465LYW9uh6r_Hy7ZV4cRpPDPvvJrx0zTPCV4TztrXIwQo3uY1IWJNFOaKP2iOiWrZigpGHt57HzVPcr7AGAvF5ePmiHZSCCK642b8Blc--TCi6NB3PwYz7ZPPUK5i-pnRpzgskyn72vkW0hxLnCCZYAH5gMoW0Okym4C-mrKNdSO0Sde7Em20dskoQHQx1X5-2jxyZsrw7CaeND_evzvfnK7Ovnz4uHl7trKc0bJyEsQggSphYeBmGATBhmPSt27oFcihA8udUVTSnvYcWw7OOsFMz53qSM9OmjcH393SzzBYCCWZSe-Sn0261tF4_Xcn-K0e4y_NKWUcs2rw6sYgxcsFctGzzxamydRjlqyJFJLhVnbyP6Qt5ZwosXd9-Y_0Ii6pfvYfQ1xpUEyqih1UNsWcE7i7vQnWe-b6lrmuzPWBeZ16cf_ku5lbyOw3xs2tkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860866201</pqid></control><display><type>article</type><title>Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans</title><source>MEDLINE</source><source>Oxford Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Yang, Dong-Hoon ; Jung, Kwang-Woo ; Bang, Soohyun ; Lee, Jang-Won ; Song, Min-Hee ; Floyd-Averette, Anna ; Festa, Richard A ; Ianiri, Giuseppe ; Idnurm, Alexander ; Thiele, Dennis J ; Heitman, Joseph ; Bahn, Yong-Sun</creator><creatorcontrib>Yang, Dong-Hoon ; Jung, Kwang-Woo ; Bang, Soohyun ; Lee, Jang-Won ; Song, Min-Hee ; Floyd-Averette, Anna ; Festa, Richard A ; Ianiri, Giuseppe ; Idnurm, Alexander ; Thiele, Dennis J ; Heitman, Joseph ; Bahn, Yong-Sun</creatorcontrib><description>Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.116.190595</identifier><identifier>PMID: 27866167</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Cryptococcus neoformans ; Cryptococcus neoformans - genetics ; Cryptococcus neoformans - metabolism ; Cryptococcus neoformans - physiology ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene Expression Profiling ; Genes ; Heat Shock Transcription Factors ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Heat-Shock Response - genetics ; Investigations ; Kinases ; Mammals ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Oxidative stress ; Phosphorylation ; Proteins ; Rodents ; Signal Transduction ; Stress response ; Temperature ; Thermotolerance - genetics ; Thermotolerance - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; Yeast</subject><ispartof>Genetics (Austin), 2017-01, Vol.205 (1), p.201-219</ispartof><rights>Copyright © 2017 by the Genetics Society of America.</rights><rights>Copyright Genetics Society of America Jan 2017</rights><rights>Copyright © 2017 by the Genetics Society of America 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f8e6d8e296ced5add610a501b4fdb9e8d7ec5fa9282b2b50c5efcf63ab5f971b3</citedby><cites>FETCH-LOGICAL-c532t-f8e6d8e296ced5add610a501b4fdb9e8d7ec5fa9282b2b50c5efcf63ab5f971b3</cites><orcidid>0000-0002-2902-8627 ; 0000-0001-5995-7040 ; 0000-0003-0021-5100 ; 0000-0002-5877-0812 ; 0000-0001-9563-7204 ; 0000-0002-3278-8678 ; 0000-0001-7549-0145 ; 0000-0001-9573-5752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27866167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Dong-Hoon</creatorcontrib><creatorcontrib>Jung, Kwang-Woo</creatorcontrib><creatorcontrib>Bang, Soohyun</creatorcontrib><creatorcontrib>Lee, Jang-Won</creatorcontrib><creatorcontrib>Song, Min-Hee</creatorcontrib><creatorcontrib>Floyd-Averette, Anna</creatorcontrib><creatorcontrib>Festa, Richard A</creatorcontrib><creatorcontrib>Ianiri, Giuseppe</creatorcontrib><creatorcontrib>Idnurm, Alexander</creatorcontrib><creatorcontrib>Thiele, Dennis J</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><creatorcontrib>Bahn, Yong-Sun</creatorcontrib><title>Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.</description><subject>Cryptococcus neoformans</subject><subject>Cryptococcus neoformans - genetics</subject><subject>Cryptococcus neoformans - metabolism</subject><subject>Cryptococcus neoformans - physiology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response - genetics</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Stress response</subject><subject>Temperature</subject><subject>Thermotolerance - genetics</subject><subject>Thermotolerance - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1v1DAQhiMEoqXwC5CQJS5cdvFH7NgXJLQCilQ-BOVsOc4465LYW9uh6r_Hy7ZV4cRpPDPvvJrx0zTPCV4TztrXIwQo3uY1IWJNFOaKP2iOiWrZigpGHt57HzVPcr7AGAvF5ePmiHZSCCK642b8Blc--TCi6NB3PwYz7ZPPUK5i-pnRpzgskyn72vkW0hxLnCCZYAH5gMoW0Okym4C-mrKNdSO0Sde7Em20dskoQHQx1X5-2jxyZsrw7CaeND_evzvfnK7Ovnz4uHl7trKc0bJyEsQggSphYeBmGATBhmPSt27oFcihA8udUVTSnvYcWw7OOsFMz53qSM9OmjcH393SzzBYCCWZSe-Sn0261tF4_Xcn-K0e4y_NKWUcs2rw6sYgxcsFctGzzxamydRjlqyJFJLhVnbyP6Qt5ZwosXd9-Y_0Ii6pfvYfQ1xpUEyqih1UNsWcE7i7vQnWe-b6lrmuzPWBeZ16cf_ku5lbyOw3xs2tkg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yang, Dong-Hoon</creator><creator>Jung, Kwang-Woo</creator><creator>Bang, Soohyun</creator><creator>Lee, Jang-Won</creator><creator>Song, Min-Hee</creator><creator>Floyd-Averette, Anna</creator><creator>Festa, Richard A</creator><creator>Ianiri, Giuseppe</creator><creator>Idnurm, Alexander</creator><creator>Thiele, Dennis J</creator><creator>Heitman, Joseph</creator><creator>Bahn, Yong-Sun</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2902-8627</orcidid><orcidid>https://orcid.org/0000-0001-5995-7040</orcidid><orcidid>https://orcid.org/0000-0003-0021-5100</orcidid><orcidid>https://orcid.org/0000-0002-5877-0812</orcidid><orcidid>https://orcid.org/0000-0001-9563-7204</orcidid><orcidid>https://orcid.org/0000-0002-3278-8678</orcidid><orcidid>https://orcid.org/0000-0001-7549-0145</orcidid><orcidid>https://orcid.org/0000-0001-9573-5752</orcidid></search><sort><creationdate>20170101</creationdate><title>Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans</title><author>Yang, Dong-Hoon ; Jung, Kwang-Woo ; Bang, Soohyun ; Lee, Jang-Won ; Song, Min-Hee ; Floyd-Averette, Anna ; Festa, Richard A ; Ianiri, Giuseppe ; Idnurm, Alexander ; Thiele, Dennis J ; Heitman, Joseph ; Bahn, Yong-Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f8e6d8e296ced5add610a501b4fdb9e8d7ec5fa9282b2b50c5efcf63ab5f971b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cryptococcus neoformans</topic><topic>Cryptococcus neoformans - genetics</topic><topic>Cryptococcus neoformans - metabolism</topic><topic>Cryptococcus neoformans - physiology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response - genetics</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Stress response</topic><topic>Temperature</topic><topic>Thermotolerance - genetics</topic><topic>Thermotolerance - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dong-Hoon</creatorcontrib><creatorcontrib>Jung, Kwang-Woo</creatorcontrib><creatorcontrib>Bang, Soohyun</creatorcontrib><creatorcontrib>Lee, Jang-Won</creatorcontrib><creatorcontrib>Song, Min-Hee</creatorcontrib><creatorcontrib>Floyd-Averette, Anna</creatorcontrib><creatorcontrib>Festa, Richard A</creatorcontrib><creatorcontrib>Ianiri, Giuseppe</creatorcontrib><creatorcontrib>Idnurm, Alexander</creatorcontrib><creatorcontrib>Thiele, Dennis J</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><creatorcontrib>Bahn, Yong-Sun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Family Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dong-Hoon</au><au>Jung, Kwang-Woo</au><au>Bang, Soohyun</au><au>Lee, Jang-Won</au><au>Song, Min-Hee</au><au>Floyd-Averette, Anna</au><au>Festa, Richard A</au><au>Ianiri, Giuseppe</au><au>Idnurm, Alexander</au><au>Thiele, Dennis J</au><au>Heitman, Joseph</au><au>Bahn, Yong-Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>205</volume><issue>1</issue><spage>201</spage><epage>219</epage><pages>201-219</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>27866167</pmid><doi>10.1534/genetics.116.190595</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2902-8627</orcidid><orcidid>https://orcid.org/0000-0001-5995-7040</orcidid><orcidid>https://orcid.org/0000-0003-0021-5100</orcidid><orcidid>https://orcid.org/0000-0002-5877-0812</orcidid><orcidid>https://orcid.org/0000-0001-9563-7204</orcidid><orcidid>https://orcid.org/0000-0002-3278-8678</orcidid><orcidid>https://orcid.org/0000-0001-7549-0145</orcidid><orcidid>https://orcid.org/0000-0001-9573-5752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2017-01, Vol.205 (1), p.201-219
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5223503
source MEDLINE; Oxford Journals - Connect here FIRST to enable access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Cryptococcus neoformans
Cryptococcus neoformans - genetics
Cryptococcus neoformans - metabolism
Cryptococcus neoformans - physiology
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Expression Profiling
Genes
Heat Shock Transcription Factors
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Heat-Shock Response - genetics
Investigations
Kinases
Mammals
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Oxidative stress
Phosphorylation
Proteins
Rodents
Signal Transduction
Stress response
Temperature
Thermotolerance - genetics
Thermotolerance - physiology
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
Yeast
title Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rewiring%20of%20Signaling%20Networks%20Modulating%20Thermotolerance%20in%20the%20Human%20Pathogen%20Cryptococcus%20neoformans&rft.jtitle=Genetics%20(Austin)&rft.au=Yang,%20Dong-Hoon&rft.date=2017-01-01&rft.volume=205&rft.issue=1&rft.spage=201&rft.epage=219&rft.pages=201-219&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.116.190595&rft_dat=%3Cproquest_pubme%3E4306513671%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860866201&rft_id=info:pmid/27866167&rfr_iscdi=true