Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage
Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we d...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-01, Vol.7 (1), p.40285, Article 40285 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 40285 |
container_title | Scientific reports |
container_volume | 7 |
creator | Christoforou, Nicolas Chakraborty, Syandan Kirkton, Robert D. Adler, Andrew F. Addis, Russell C. Leong, Kam W. |
description | Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation. |
doi_str_mv | 10.1038/srep40285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5223186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899446805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-cd5325532ee2536612660270748b9545840551b435e3504b1b833d508cc3f24d3</originalsourceid><addsrcrecordid>eNplkdtqGzEQhkVpaUKSi7xAEOSqJU51XGtvCmGbEzgttO610GpnHYX1ypF2U_oMfelOYse4VCBmYP75ZpifkGPOzjmT5lNOsFJMGP2G7Aum9ERIId7u5HvkKOcHhk-LUvHyPdkThk35VIl98qeKCeg8uT77FFZDiD29cn6IKZ_Ru-BT_P71AlPXN_TH0nUdvYsd-LGDTL-k8LTpbULbQoJ-CO4FEVt6My4dskKdYt25PGQ6j79cajDeA60wC87TChA5Cz24BRySd63rMhxt4gH5eXU5r24ms2_Xt9XFbOI1U8PEN1oKjR9AaFkUXBQFE1M2VaYutdJGMa15raQGiQ01r42UjWbGe9kK1cgD8nnNXY31EhqPayfX2VUKS5d-2-iC_bfSh3u7iE9WCyG5KRBwugGk-DhCHuxDHFOPO1tuylKpwjCNqg9rFR4xo0vtdgJn9tk6u7UOtSe7K22Vr0ah4ONakLHULyDtjPyP9hfmXaLq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899446805</pqid></control><display><type>article</type><title>Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Christoforou, Nicolas ; Chakraborty, Syandan ; Kirkton, Robert D. ; Adler, Andrew F. ; Addis, Russell C. ; Leong, Kam W.</creator><creatorcontrib>Christoforou, Nicolas ; Chakraborty, Syandan ; Kirkton, Robert D. ; Adler, Andrew F. ; Addis, Russell C. ; Leong, Kam W.</creatorcontrib><description>Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep40285</identifier><identifier>PMID: 28071742</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 14/35 ; 14/63 ; 38/39 ; 38/44 ; 38/61 ; 38/77 ; 38/90 ; 42/100 ; 631/532/2128 ; 631/532/2435 ; 96/34 ; Calcium ; Cardiomyocytes ; Cell lineage ; Cytoskeleton ; Fibroblasts ; Glycogen ; Glycogen synthase kinase 3 ; Heart diseases ; Humanities and Social Sciences ; Janus kinase ; MicroRNAs ; miRNA ; multidisciplinary ; Muscle contraction ; Nkx2.5 protein ; Physiology ; Science ; Science (multidisciplinary) ; Skin ; Transcription activation ; Transcription factors</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.40285, Article 40285</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-cd5325532ee2536612660270748b9545840551b435e3504b1b833d508cc3f24d3</citedby><cites>FETCH-LOGICAL-c504t-cd5325532ee2536612660270748b9545840551b435e3504b1b833d508cc3f24d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christoforou, Nicolas</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Kirkton, Robert D.</creatorcontrib><creatorcontrib>Adler, Andrew F.</creatorcontrib><creatorcontrib>Addis, Russell C.</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><title>Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.</description><subject>13/106</subject><subject>13/109</subject><subject>14/35</subject><subject>14/63</subject><subject>38/39</subject><subject>38/44</subject><subject>38/61</subject><subject>38/77</subject><subject>38/90</subject><subject>42/100</subject><subject>631/532/2128</subject><subject>631/532/2435</subject><subject>96/34</subject><subject>Calcium</subject><subject>Cardiomyocytes</subject><subject>Cell lineage</subject><subject>Cytoskeleton</subject><subject>Fibroblasts</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Heart diseases</subject><subject>Humanities and Social Sciences</subject><subject>Janus kinase</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>multidisciplinary</subject><subject>Muscle contraction</subject><subject>Nkx2.5 protein</subject><subject>Physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkdtqGzEQhkVpaUKSi7xAEOSqJU51XGtvCmGbEzgttO610GpnHYX1ypF2U_oMfelOYse4VCBmYP75ZpifkGPOzjmT5lNOsFJMGP2G7Aum9ERIId7u5HvkKOcHhk-LUvHyPdkThk35VIl98qeKCeg8uT77FFZDiD29cn6IKZ_Ru-BT_P71AlPXN_TH0nUdvYsd-LGDTL-k8LTpbULbQoJ-CO4FEVt6My4dskKdYt25PGQ6j79cajDeA60wC87TChA5Cz24BRySd63rMhxt4gH5eXU5r24ms2_Xt9XFbOI1U8PEN1oKjR9AaFkUXBQFE1M2VaYutdJGMa15raQGiQ01r42UjWbGe9kK1cgD8nnNXY31EhqPayfX2VUKS5d-2-iC_bfSh3u7iE9WCyG5KRBwugGk-DhCHuxDHFOPO1tuylKpwjCNqg9rFR4xo0vtdgJn9tk6u7UOtSe7K22Vr0ah4ONakLHULyDtjPyP9hfmXaLq</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Christoforou, Nicolas</creator><creator>Chakraborty, Syandan</creator><creator>Kirkton, Robert D.</creator><creator>Adler, Andrew F.</creator><creator>Addis, Russell C.</creator><creator>Leong, Kam W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20170110</creationdate><title>Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage</title><author>Christoforou, Nicolas ; Chakraborty, Syandan ; Kirkton, Robert D. ; Adler, Andrew F. ; Addis, Russell C. ; Leong, Kam W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-cd5325532ee2536612660270748b9545840551b435e3504b1b833d508cc3f24d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/106</topic><topic>13/109</topic><topic>14/35</topic><topic>14/63</topic><topic>38/39</topic><topic>38/44</topic><topic>38/61</topic><topic>38/77</topic><topic>38/90</topic><topic>42/100</topic><topic>631/532/2128</topic><topic>631/532/2435</topic><topic>96/34</topic><topic>Calcium</topic><topic>Cardiomyocytes</topic><topic>Cell lineage</topic><topic>Cytoskeleton</topic><topic>Fibroblasts</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Heart diseases</topic><topic>Humanities and Social Sciences</topic><topic>Janus kinase</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>multidisciplinary</topic><topic>Muscle contraction</topic><topic>Nkx2.5 protein</topic><topic>Physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christoforou, Nicolas</creatorcontrib><creatorcontrib>Chakraborty, Syandan</creatorcontrib><creatorcontrib>Kirkton, Robert D.</creatorcontrib><creatorcontrib>Adler, Andrew F.</creatorcontrib><creatorcontrib>Addis, Russell C.</creatorcontrib><creatorcontrib>Leong, Kam W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christoforou, Nicolas</au><au>Chakraborty, Syandan</au><au>Kirkton, Robert D.</au><au>Adler, Andrew F.</au><au>Addis, Russell C.</au><au>Leong, Kam W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>40285</spage><pages>40285-</pages><artnum>40285</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28071742</pmid><doi>10.1038/srep40285</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-01, Vol.7 (1), p.40285, Article 40285 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5223186 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 13/106 13/109 14/35 14/63 38/39 38/44 38/61 38/77 38/90 42/100 631/532/2128 631/532/2435 96/34 Calcium Cardiomyocytes Cell lineage Cytoskeleton Fibroblasts Glycogen Glycogen synthase kinase 3 Heart diseases Humanities and Social Sciences Janus kinase MicroRNAs miRNA multidisciplinary Muscle contraction Nkx2.5 protein Physiology Science Science (multidisciplinary) Skin Transcription activation Transcription factors |
title | Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20Transcription%20Factors,%20MicroRNAs,%20and%20Small%20Molecules%20Drive%20Transdifferentiation%20of%20Human%20Fibroblasts%20Towards%20The%20Cardiac%20Cell%20Lineage&rft.jtitle=Scientific%20reports&rft.au=Christoforou,%20Nicolas&rft.date=2017-01-10&rft.volume=7&rft.issue=1&rft.spage=40285&rft.pages=40285-&rft.artnum=40285&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep40285&rft_dat=%3Cproquest_pubme%3E1899446805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899446805&rft_id=info:pmid/28071742&rfr_iscdi=true |