Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study

Background Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. Objective The purpose of this study was to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heart rhythm 2016-12, Vol.13 (12), p.2358-2365
Hauptverfasser: Liberos, Alejandro, PhD, Bueno-Orovio, Alfonso, PhD, Rodrigo, Miguel, MS, Ravens, Ursula, MD, Hernandez-Romero, Ismael, MS, Fernandez-Aviles, Francisco, MD, PhD, Guillem, Maria S., PhD, Rodriguez, Blanca, PhD, Climent, Andreu M., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2365
container_issue 12
container_start_page 2358
container_title Heart rhythm
container_volume 13
creator Liberos, Alejandro, PhD
Bueno-Orovio, Alfonso, PhD
Rodrigo, Miguel, MS
Ravens, Ursula, MD
Hernandez-Romero, Ismael, MS
Fernandez-Aviles, Francisco, MD, PhD
Guillem, Maria S., PhD
Rodriguez, Blanca, PhD
Climent, Andreu M., PhD
description Background Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. Objective The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. Methods A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. Results Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of INa and ICaL ( P
doi_str_mv 10.1016/j.hrthm.2016.08.028
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1547527116306713</els_id><sourcerecordid>1_s2_0_S1547527116306713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d0efdd7507060a0c48f327fda46a24f4f4e167bd7bf2f806c511de0d678a943d3</originalsourceid><addsrcrecordid>eNqFUtGK1TAQDaK46-oXCJIfaHeStEmv4MK6uCos-KA-hzRJ96am6ZKkV_oN_rTpXl3UF8lDzjBzzjBzBqGXBGoChJ-P9T7m_VTTEtTQ1UC7R-iUtC2vWCfI4w03omqpICfoWUojAN1xYE_RCRUt3zUNO0U_3iqvgra4t_m7tQGn2bhlwioYrJXXG9ZLjDbkhJdgbPSrC7dY7-McnMYqR6c8HlwfnfcquzngbOPkwj1-jS8DdkXVeafngkouLf1odcYHVah9SeQVp7yY9Tl6Miif7Itf_xn6ev3uy9WH6ubT-49XlzeVbkmTKwN2MEa0IICDAt10A6NiMKrhijZDeZZw0RvRD3TogBcWMRYMF53aNcywM3Rx1L1b-skaXWaLysu76CYVVzkrJ__OBLeXt_NBtpQSwaAIsKOAjnNK0Q4PXAJy80aO8t4buXkjoZPFm8J69WfbB85vM0rBm2OBLcMfnI0yaWeLOcbFsjBpZvefBhf_8LV3xSTlv9nVpnFeYih7lUQmKkF-3s5juw7CGXBBGPsJn6e8Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Liberos, Alejandro, PhD ; Bueno-Orovio, Alfonso, PhD ; Rodrigo, Miguel, MS ; Ravens, Ursula, MD ; Hernandez-Romero, Ismael, MS ; Fernandez-Aviles, Francisco, MD, PhD ; Guillem, Maria S., PhD ; Rodriguez, Blanca, PhD ; Climent, Andreu M., PhD</creator><creatorcontrib>Liberos, Alejandro, PhD ; Bueno-Orovio, Alfonso, PhD ; Rodrigo, Miguel, MS ; Ravens, Ursula, MD ; Hernandez-Romero, Ismael, MS ; Fernandez-Aviles, Francisco, MD, PhD ; Guillem, Maria S., PhD ; Rodriguez, Blanca, PhD ; Climent, Andreu M., PhD</creatorcontrib><description>Background Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. Objective The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. Methods A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. Results Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of INa and ICaL ( P &lt;.01), with no significant differences in the remaining currents. ICaL blockade promoted AF extinction in 30% of these 126 models. The mechanism of AF termination was related with collisions between rotors because of an increase in rotor meandering (1.71 ± 2.01cm2 ) and presented an increased efficacy in models with a depressed INa ( P &lt;.01). Conclusion Mathematical simulations based on a population of models representing intersubject variability allow the identification of ionic mechanisms underlying rotor dynamics and the definition of new personalized pharmacologic strategies. Our results suggest that the underlying mechanism of the diverging success of ICaL block as an antiarrhythmic strategy is dependent on the basal availability of sodium and calcium ion channel conductivities.</description><identifier>ISSN: 1547-5271</identifier><identifier>EISSN: 1556-3871</identifier><identifier>DOI: 10.1016/j.hrthm.2016.08.028</identifier><identifier>PMID: 27569443</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Anti-Arrhythmia Agents - pharmacology ; Atrial fibrillation ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - drug therapy ; Atrial Fibrillation - metabolism ; Atrial Fibrillation - physiopathology ; Atrial Remodeling ; Calcium Channels - metabolism ; Calcium current ; Cardiovascular ; Computer Simulation ; Humans ; Ionic currents ; Mathematical modeling ; Models, Cardiovascular ; Rotor dynamics ; Sodium Channels - metabolism</subject><ispartof>Heart rhythm, 2016-12, Vol.13 (12), p.2358-2365</ispartof><rights>The Authors</rights><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d0efdd7507060a0c48f327fda46a24f4f4e167bd7bf2f806c511de0d678a943d3</citedby><cites>FETCH-LOGICAL-c514t-d0efdd7507060a0c48f327fda46a24f4f4e167bd7bf2f806c511de0d678a943d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hrthm.2016.08.028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27569443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liberos, Alejandro, PhD</creatorcontrib><creatorcontrib>Bueno-Orovio, Alfonso, PhD</creatorcontrib><creatorcontrib>Rodrigo, Miguel, MS</creatorcontrib><creatorcontrib>Ravens, Ursula, MD</creatorcontrib><creatorcontrib>Hernandez-Romero, Ismael, MS</creatorcontrib><creatorcontrib>Fernandez-Aviles, Francisco, MD, PhD</creatorcontrib><creatorcontrib>Guillem, Maria S., PhD</creatorcontrib><creatorcontrib>Rodriguez, Blanca, PhD</creatorcontrib><creatorcontrib>Climent, Andreu M., PhD</creatorcontrib><title>Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study</title><title>Heart rhythm</title><addtitle>Heart Rhythm</addtitle><description>Background Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. Objective The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. Methods A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. Results Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of INa and ICaL ( P &lt;.01), with no significant differences in the remaining currents. ICaL blockade promoted AF extinction in 30% of these 126 models. The mechanism of AF termination was related with collisions between rotors because of an increase in rotor meandering (1.71 ± 2.01cm2 ) and presented an increased efficacy in models with a depressed INa ( P &lt;.01). Conclusion Mathematical simulations based on a population of models representing intersubject variability allow the identification of ionic mechanisms underlying rotor dynamics and the definition of new personalized pharmacologic strategies. Our results suggest that the underlying mechanism of the diverging success of ICaL block as an antiarrhythmic strategy is dependent on the basal availability of sodium and calcium ion channel conductivities.</description><subject>Action Potentials - physiology</subject><subject>Anti-Arrhythmia Agents - pharmacology</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - drug therapy</subject><subject>Atrial Fibrillation - metabolism</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Remodeling</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium current</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Ionic currents</subject><subject>Mathematical modeling</subject><subject>Models, Cardiovascular</subject><subject>Rotor dynamics</subject><subject>Sodium Channels - metabolism</subject><issn>1547-5271</issn><issn>1556-3871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUtGK1TAQDaK46-oXCJIfaHeStEmv4MK6uCos-KA-hzRJ96am6ZKkV_oN_rTpXl3UF8lDzjBzzjBzBqGXBGoChJ-P9T7m_VTTEtTQ1UC7R-iUtC2vWCfI4w03omqpICfoWUojAN1xYE_RCRUt3zUNO0U_3iqvgra4t_m7tQGn2bhlwioYrJXXG9ZLjDbkhJdgbPSrC7dY7-McnMYqR6c8HlwfnfcquzngbOPkwj1-jS8DdkXVeafngkouLf1odcYHVah9SeQVp7yY9Tl6Miif7Itf_xn6ev3uy9WH6ubT-49XlzeVbkmTKwN2MEa0IICDAt10A6NiMKrhijZDeZZw0RvRD3TogBcWMRYMF53aNcywM3Rx1L1b-skaXWaLysu76CYVVzkrJ__OBLeXt_NBtpQSwaAIsKOAjnNK0Q4PXAJy80aO8t4buXkjoZPFm8J69WfbB85vM0rBm2OBLcMfnI0yaWeLOcbFsjBpZvefBhf_8LV3xSTlv9nVpnFeYih7lUQmKkF-3s5juw7CGXBBGPsJn6e8Og</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Liberos, Alejandro, PhD</creator><creator>Bueno-Orovio, Alfonso, PhD</creator><creator>Rodrigo, Miguel, MS</creator><creator>Ravens, Ursula, MD</creator><creator>Hernandez-Romero, Ismael, MS</creator><creator>Fernandez-Aviles, Francisco, MD, PhD</creator><creator>Guillem, Maria S., PhD</creator><creator>Rodriguez, Blanca, PhD</creator><creator>Climent, Andreu M., PhD</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study</title><author>Liberos, Alejandro, PhD ; Bueno-Orovio, Alfonso, PhD ; Rodrigo, Miguel, MS ; Ravens, Ursula, MD ; Hernandez-Romero, Ismael, MS ; Fernandez-Aviles, Francisco, MD, PhD ; Guillem, Maria S., PhD ; Rodriguez, Blanca, PhD ; Climent, Andreu M., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d0efdd7507060a0c48f327fda46a24f4f4e167bd7bf2f806c511de0d678a943d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials - physiology</topic><topic>Anti-Arrhythmia Agents - pharmacology</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - drug therapy</topic><topic>Atrial Fibrillation - metabolism</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Remodeling</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium current</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Ionic currents</topic><topic>Mathematical modeling</topic><topic>Models, Cardiovascular</topic><topic>Rotor dynamics</topic><topic>Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liberos, Alejandro, PhD</creatorcontrib><creatorcontrib>Bueno-Orovio, Alfonso, PhD</creatorcontrib><creatorcontrib>Rodrigo, Miguel, MS</creatorcontrib><creatorcontrib>Ravens, Ursula, MD</creatorcontrib><creatorcontrib>Hernandez-Romero, Ismael, MS</creatorcontrib><creatorcontrib>Fernandez-Aviles, Francisco, MD, PhD</creatorcontrib><creatorcontrib>Guillem, Maria S., PhD</creatorcontrib><creatorcontrib>Rodriguez, Blanca, PhD</creatorcontrib><creatorcontrib>Climent, Andreu M., PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heart rhythm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liberos, Alejandro, PhD</au><au>Bueno-Orovio, Alfonso, PhD</au><au>Rodrigo, Miguel, MS</au><au>Ravens, Ursula, MD</au><au>Hernandez-Romero, Ismael, MS</au><au>Fernandez-Aviles, Francisco, MD, PhD</au><au>Guillem, Maria S., PhD</au><au>Rodriguez, Blanca, PhD</au><au>Climent, Andreu M., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study</atitle><jtitle>Heart rhythm</jtitle><addtitle>Heart Rhythm</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>13</volume><issue>12</issue><spage>2358</spage><epage>2365</epage><pages>2358-2365</pages><issn>1547-5271</issn><eissn>1556-3871</eissn><abstract>Background Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. Objective The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. Methods A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. Results Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of INa and ICaL ( P &lt;.01), with no significant differences in the remaining currents. ICaL blockade promoted AF extinction in 30% of these 126 models. The mechanism of AF termination was related with collisions between rotors because of an increase in rotor meandering (1.71 ± 2.01cm2 ) and presented an increased efficacy in models with a depressed INa ( P &lt;.01). Conclusion Mathematical simulations based on a population of models representing intersubject variability allow the identification of ionic mechanisms underlying rotor dynamics and the definition of new personalized pharmacologic strategies. Our results suggest that the underlying mechanism of the diverging success of ICaL block as an antiarrhythmic strategy is dependent on the basal availability of sodium and calcium ion channel conductivities.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27569443</pmid><doi>10.1016/j.hrthm.2016.08.028</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-5271
ispartof Heart rhythm, 2016-12, Vol.13 (12), p.2358-2365
issn 1547-5271
1556-3871
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5221730
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Action Potentials - physiology
Anti-Arrhythmia Agents - pharmacology
Atrial fibrillation
Atrial Fibrillation - diagnosis
Atrial Fibrillation - drug therapy
Atrial Fibrillation - metabolism
Atrial Fibrillation - physiopathology
Atrial Remodeling
Calcium Channels - metabolism
Calcium current
Cardiovascular
Computer Simulation
Humans
Ionic currents
Mathematical modeling
Models, Cardiovascular
Rotor dynamics
Sodium Channels - metabolism
title Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balance%20between%20sodium%20and%20calcium%20currents%20underlying%20chronic%20atrial%20fibrillation%20termination:%20An%20in%20silico%20intersubject%20variability%20study&rft.jtitle=Heart%20rhythm&rft.au=Liberos,%20Alejandro,%20PhD&rft.date=2016-12-01&rft.volume=13&rft.issue=12&rft.spage=2358&rft.epage=2365&rft.pages=2358-2365&rft.issn=1547-5271&rft.eissn=1556-3871&rft_id=info:doi/10.1016/j.hrthm.2016.08.028&rft_dat=%3Celsevier_pubme%3E1_s2_0_S1547527116306713%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27569443&rft_els_id=1_s2_0_S1547527116306713&rfr_iscdi=true