Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners

Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2017-01, Vol.16 (1), p.73-85
Hauptverfasser: Paul, Florian, Zauber, Henrik, von Berg, Laura, Rocks, Oliver, Daumke, Oliver, Selbach, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 73
container_title Molecular & cellular proteomics
container_volume 16
creator Paul, Florian
Zauber, Henrik
von Berg, Laura
Rocks, Oliver
Daumke, Oliver
Selbach, Matthias
description Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.
doi_str_mv 10.1074/mcp.M116.061531
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5217783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620324531</els_id><sourcerecordid>1983676693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-53a95257309dd8ed4eaf9c2f362652922ea96b9368c484add3796ae3c1e0b5a43</originalsourceid><addsrcrecordid>eNqNkc1LXDEUxYNYqtWu3ZUHbtzMmI-X5GVTEFErWDoVuyuETHJfjbyXTJO8Af_7Zjp2aAuFrm7g_nI49xyETgieEyzb89Gu5h8JEXMsCGdkDx3WwWeq7dr93VuKA_Qm5yeMKSaSv0YHVHacyrY7RF8_TyYUX0zxa2huHhYmQ3PR9z748twspuR7b-syhubWQSV7D7m5f4zNtRn9UJEUC_i6DQWSsT_JhUklQMrH6FVvhgxvX-YR-nJ99XD5YXb36eb28uJuZgURZcaZUZxyybByrgPXgumVpT0TVHCqKAWjxFIx0dl6l3GOSSUMMEsAL7lp2RF6v9VdTcsRnK0-kxn0KvnRpGcdjdd_boJ_1N_iWnNKpOxYFTh7EUjx-wS56NFnC8NgAsQpa9LxTYyK_A_aElKtclrR07_QpzilUJPQRHVMSCHURvB8S9kUc07Q73wTrDcl61qy3pSstyXXH-9-P3fH_2q1AmoLQA197SHpbD0EC84nsEW76P8p_gPenbbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983676693</pqid></control><display><type>article</type><title>Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Paul, Florian ; Zauber, Henrik ; von Berg, Laura ; Rocks, Oliver ; Daumke, Oliver ; Selbach, Matthias</creator><creatorcontrib>Paul, Florian ; Zauber, Henrik ; von Berg, Laura ; Rocks, Oliver ; Daumke, Oliver ; Selbach, Matthias</creatorcontrib><description>Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M116.061531</identifier><identifier>PMID: 27852748</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Affinity ; Animals ; Binding ; Brain - metabolism ; Cdc42 protein ; Glycoproteins ; Guanosine triphosphatases ; HEK293 Cells ; HeLa Cells ; Humans ; Lysates ; Mass Spectrometry ; Mice ; Molecular machines ; Protein Interaction Maps ; Protein purification ; Proteomics - methods ; Purification ; Rac1 protein ; rho GTP-Binding Proteins - metabolism ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Switches</subject><ispartof>Molecular &amp; cellular proteomics, 2017-01, Vol.16 (1), p.73-85</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>Copyright American Society for Biochemistry and Molecular Biology Jan 2017</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-53a95257309dd8ed4eaf9c2f362652922ea96b9368c484add3796ae3c1e0b5a43</citedby><cites>FETCH-LOGICAL-c616t-53a95257309dd8ed4eaf9c2f362652922ea96b9368c484add3796ae3c1e0b5a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217783/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217783/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27852748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Florian</creatorcontrib><creatorcontrib>Zauber, Henrik</creatorcontrib><creatorcontrib>von Berg, Laura</creatorcontrib><creatorcontrib>Rocks, Oliver</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Selbach, Matthias</creatorcontrib><title>Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.</description><subject>Affinity</subject><subject>Animals</subject><subject>Binding</subject><subject>Brain - metabolism</subject><subject>Cdc42 protein</subject><subject>Glycoproteins</subject><subject>Guanosine triphosphatases</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Lysates</subject><subject>Mass Spectrometry</subject><subject>Mice</subject><subject>Molecular machines</subject><subject>Protein Interaction Maps</subject><subject>Protein purification</subject><subject>Proteomics - methods</subject><subject>Purification</subject><subject>Rac1 protein</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Switches</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LXDEUxYNYqtWu3ZUHbtzMmI-X5GVTEFErWDoVuyuETHJfjbyXTJO8Af_7Zjp2aAuFrm7g_nI49xyETgieEyzb89Gu5h8JEXMsCGdkDx3WwWeq7dr93VuKA_Qm5yeMKSaSv0YHVHacyrY7RF8_TyYUX0zxa2huHhYmQ3PR9z748twspuR7b-syhubWQSV7D7m5f4zNtRn9UJEUC_i6DQWSsT_JhUklQMrH6FVvhgxvX-YR-nJ99XD5YXb36eb28uJuZgURZcaZUZxyybByrgPXgumVpT0TVHCqKAWjxFIx0dl6l3GOSSUMMEsAL7lp2RF6v9VdTcsRnK0-kxn0KvnRpGcdjdd_boJ_1N_iWnNKpOxYFTh7EUjx-wS56NFnC8NgAsQpa9LxTYyK_A_aElKtclrR07_QpzilUJPQRHVMSCHURvB8S9kUc07Q73wTrDcl61qy3pSstyXXH-9-P3fH_2q1AmoLQA197SHpbD0EC84nsEW76P8p_gPenbbk</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Paul, Florian</creator><creator>Zauber, Henrik</creator><creator>von Berg, Laura</creator><creator>Rocks, Oliver</creator><creator>Daumke, Oliver</creator><creator>Selbach, Matthias</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners</title><author>Paul, Florian ; Zauber, Henrik ; von Berg, Laura ; Rocks, Oliver ; Daumke, Oliver ; Selbach, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-53a95257309dd8ed4eaf9c2f362652922ea96b9368c484add3796ae3c1e0b5a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Animals</topic><topic>Binding</topic><topic>Brain - metabolism</topic><topic>Cdc42 protein</topic><topic>Glycoproteins</topic><topic>Guanosine triphosphatases</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Lysates</topic><topic>Mass Spectrometry</topic><topic>Mice</topic><topic>Molecular machines</topic><topic>Protein Interaction Maps</topic><topic>Protein purification</topic><topic>Proteomics - methods</topic><topic>Purification</topic><topic>Rac1 protein</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Florian</creatorcontrib><creatorcontrib>Zauber, Henrik</creatorcontrib><creatorcontrib>von Berg, Laura</creatorcontrib><creatorcontrib>Rocks, Oliver</creatorcontrib><creatorcontrib>Daumke, Oliver</creatorcontrib><creatorcontrib>Selbach, Matthias</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Florian</au><au>Zauber, Henrik</au><au>von Berg, Laura</au><au>Rocks, Oliver</au><au>Daumke, Oliver</au><au>Selbach, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>73</spage><epage>85</epage><pages>73-85</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27852748</pmid><doi>10.1074/mcp.M116.061531</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2017-01, Vol.16 (1), p.73-85
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5217783
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Affinity
Animals
Binding
Brain - metabolism
Cdc42 protein
Glycoproteins
Guanosine triphosphatases
HEK293 Cells
HeLa Cells
Humans
Lysates
Mass Spectrometry
Mice
Molecular machines
Protein Interaction Maps
Protein purification
Proteomics - methods
Purification
Rac1 protein
rho GTP-Binding Proteins - metabolism
rhoA GTP-Binding Protein - metabolism
RhoA protein
Switches
title Quantitative GTPase Affinity Purification Identifies Rho Family Protein Interaction Partners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20GTPase%20Affinity%20Purification%20Identifies%20Rho%20Family%20Protein%20Interaction%20Partners&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Paul,%20Florian&rft.date=2017-01-01&rft.volume=16&rft.issue=1&rft.spage=73&rft.epage=85&rft.pages=73-85&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M116.061531&rft_dat=%3Cproquest_pubme%3E1983676693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983676693&rft_id=info:pmid/27852748&rft_els_id=S1535947620324531&rfr_iscdi=true