Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media

Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2016-07, Vol.50 (13), p.7208-7217
Hauptverfasser: Wang, Zhongying, von dem Bussche, Annette, Qiu, Yang, Valentin, Thomas M, Gion, Kyle, Kane, Agnes B, Hurt, Robert H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7217
container_issue 13
container_start_page 7208
container_title Environmental science & technology
container_volume 50
creator Wang, Zhongying
von dem Bussche, Annette
Qiu, Yang
Valentin, Thomas M
Gion, Kyle
Kane, Agnes B
Hurt, Robert H
description Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1–30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk.
doi_str_mv 10.1021/acs.est.6b01881
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5217159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000226715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-16835b500d7e6906b2123a2ba88787d9694f7b44ef474d5445b8e1d402d7e9d43</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIlsKZG8oRCaXYju04FyQo5SG1gMRD3CwncVpXiV3ipKh_j0MLgtNKs7OzuzMAHCM4RBCjc5m5oXLNkKUQcY52QB9RDEPKKdoFfQhRFCYRe--BA-cWEEIcQb4PejjGLE4o64O30VxVOpNlcK2ds2XbaGuCJ9nMP-XaBbYIpvYZBw_SWDdXqnGBNsGVtqWdfU9Jkwdjs9K1NZUyjUemKtfyEOwVsnTqaFsH4PVm_DK6CyePt_ejy0koCcFNiBiPaEohzGPFEshSjHAkcSo5j3mcJywhRZwSogoSk5wSQlOuUE4g9gNJTqIBuNjoLtu0UnnmT6hlKZa1rmS9FlZq8b9j9FzM7EpQjGJEEy9wuhWo7UfrrRSVdpkqS2mUbZ3AnWneLEQ99eTvrt8lP2Z6wtmG4FMRC9vWxr8uEBRdVKIDO_1tVNEXotCGNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000226715</pqid></control><display><type>article</type><title>Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wang, Zhongying ; von dem Bussche, Annette ; Qiu, Yang ; Valentin, Thomas M ; Gion, Kyle ; Kane, Agnes B ; Hurt, Robert H</creator><creatorcontrib>Wang, Zhongying ; von dem Bussche, Annette ; Qiu, Yang ; Valentin, Thomas M ; Gion, Kyle ; Kane, Agnes B ; Hurt, Robert H</creatorcontrib><description>Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1–30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b01881</identifier><identifier>PMID: 27267956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>cytotoxicity ; Disulfides ; environmental fate ; half life ; molybdates ; molybdenum ; nanosheets ; Nanostructures ; oxidation ; protons ; risk ; Solubility ; sulfur ; thermodynamics</subject><ispartof>Environmental science &amp; technology, 2016-07, Vol.50 (13), p.7208-7217</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b01881$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b01881$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27267956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhongying</creatorcontrib><creatorcontrib>von dem Bussche, Annette</creatorcontrib><creatorcontrib>Qiu, Yang</creatorcontrib><creatorcontrib>Valentin, Thomas M</creatorcontrib><creatorcontrib>Gion, Kyle</creatorcontrib><creatorcontrib>Kane, Agnes B</creatorcontrib><creatorcontrib>Hurt, Robert H</creatorcontrib><title>Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1–30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk.</description><subject>cytotoxicity</subject><subject>Disulfides</subject><subject>environmental fate</subject><subject>half life</subject><subject>molybdates</subject><subject>molybdenum</subject><subject>nanosheets</subject><subject>Nanostructures</subject><subject>oxidation</subject><subject>protons</subject><subject>risk</subject><subject>Solubility</subject><subject>sulfur</subject><subject>thermodynamics</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCIlsKZG8oRCaXYju04FyQo5SG1gMRD3CwncVpXiV3ipKh_j0MLgtNKs7OzuzMAHCM4RBCjc5m5oXLNkKUQcY52QB9RDEPKKdoFfQhRFCYRe--BA-cWEEIcQb4PejjGLE4o64O30VxVOpNlcK2ds2XbaGuCJ9nMP-XaBbYIpvYZBw_SWDdXqnGBNsGVtqWdfU9Jkwdjs9K1NZUyjUemKtfyEOwVsnTqaFsH4PVm_DK6CyePt_ejy0koCcFNiBiPaEohzGPFEshSjHAkcSo5j3mcJywhRZwSogoSk5wSQlOuUE4g9gNJTqIBuNjoLtu0UnnmT6hlKZa1rmS9FlZq8b9j9FzM7EpQjGJEEy9wuhWo7UfrrRSVdpkqS2mUbZ3AnWneLEQ99eTvrt8lP2Z6wtmG4FMRC9vWxr8uEBRdVKIDO_1tVNEXotCGNQ</recordid><startdate>20160705</startdate><enddate>20160705</enddate><creator>Wang, Zhongying</creator><creator>von dem Bussche, Annette</creator><creator>Qiu, Yang</creator><creator>Valentin, Thomas M</creator><creator>Gion, Kyle</creator><creator>Kane, Agnes B</creator><creator>Hurt, Robert H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160705</creationdate><title>Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media</title><author>Wang, Zhongying ; von dem Bussche, Annette ; Qiu, Yang ; Valentin, Thomas M ; Gion, Kyle ; Kane, Agnes B ; Hurt, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-16835b500d7e6906b2123a2ba88787d9694f7b44ef474d5445b8e1d402d7e9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cytotoxicity</topic><topic>Disulfides</topic><topic>environmental fate</topic><topic>half life</topic><topic>molybdates</topic><topic>molybdenum</topic><topic>nanosheets</topic><topic>Nanostructures</topic><topic>oxidation</topic><topic>protons</topic><topic>risk</topic><topic>Solubility</topic><topic>sulfur</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhongying</creatorcontrib><creatorcontrib>von dem Bussche, Annette</creatorcontrib><creatorcontrib>Qiu, Yang</creatorcontrib><creatorcontrib>Valentin, Thomas M</creatorcontrib><creatorcontrib>Gion, Kyle</creatorcontrib><creatorcontrib>Kane, Agnes B</creatorcontrib><creatorcontrib>Hurt, Robert H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhongying</au><au>von dem Bussche, Annette</au><au>Qiu, Yang</au><au>Valentin, Thomas M</au><au>Gion, Kyle</au><au>Kane, Agnes B</au><au>Hurt, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2016-07-05</date><risdate>2016</risdate><volume>50</volume><issue>13</issue><spage>7208</spage><epage>7217</epage><pages>7208-7217</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1–30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27267956</pmid><doi>10.1021/acs.est.6b01881</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2016-07, Vol.50 (13), p.7208-7217
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5217159
source ACS Publications; MEDLINE
subjects cytotoxicity
Disulfides
environmental fate
half life
molybdates
molybdenum
nanosheets
Nanostructures
oxidation
protons
risk
Solubility
sulfur
thermodynamics
title Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Dissolution%20Pathways%20of%20MoS2%20Nanosheets%20in%20Biological%20and%20Environmental%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Zhongying&rft.date=2016-07-05&rft.volume=50&rft.issue=13&rft.spage=7208&rft.epage=7217&rft.pages=7208-7217&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.6b01881&rft_dat=%3Cproquest_pubme%3E2000226715%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000226715&rft_id=info:pmid/27267956&rfr_iscdi=true