Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-01, Vol.7 (1), p.40004-40004, Article 40004
Hauptverfasser: Tian, Zhenhua, Yu, Lingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40004
container_issue 1
container_start_page 40004
container_title Scientific reports
container_volume 7
creator Tian, Zhenhua
Yu, Lingyu
description The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
doi_str_mv 10.1038/srep40004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5213308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899447426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-870770b6c537b70a596e138efc77d9b7ade317e8caf25ab0552f7754a25bad4d3</originalsourceid><addsrcrecordid>eNplkd9LIzEQx4OcqKgP9w_I4r3oQc_8bLIvgpTzFIoH4j2HbHa2Tdkma7Jb8b-_aLVUfZqZzIfvTOaL0HeCfxHM1EWK0HGMMd9BBxRzMaKM0m9b-T46TmmRCSxoyUm5h_apwoKPMTlAd_fG-So8FX00Xef8rAhNMbS5SsE7W8wGV0NdPJkVpML5ws5d7PJDNw_-FbDxOfWmLbrW9JCO0G5j2gTHb_EQ_bv-_TC5GU3__rmdXE1HVjDSj5TEUuJqnCtZSWxEOQbCFDRWyrqspKmBEQnKmoYKU2EhaCOl4IaKytS8Zofocq3bDdUSags-b9zqLrqlic86GKc_dryb61lYaUEJY1hlgdO1QEi908m6HuzcBu_B9pqwfBwsM3T2NiWGxwFSr5cuWWhb4yEMSRMlhFSlUC_oj0_oIgzR5xtkqiw5l5yOM3W-pmwMKRvXbDYmWL-4qTduZvZk-4sb8t27DPxcAym3_Azi1sgvav8Bgb-pNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899447426</pqid></control><display><type>article</type><title>Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates</title><source>PubMed (Medline)</source><source>Nature_OA刊</source><source>Springer_OA刊</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Tian, Zhenhua ; Yu, Lingyu</creator><creatorcontrib>Tian, Zhenhua ; Yu, Lingyu ; Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><description>The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep40004</identifier><identifier>PMID: 28054601</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4072/4062 ; 639/624/400/1102 ; 639/766/25/3927 ; acoustics ; devices for energy harvesting ; Energy ; Humanities and Social Sciences ; multidisciplinary ; Nondestructive testing ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Science ; Science (multidisciplinary) ; slow light ; Trapping ; Velocity ; Wave energy</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.40004-40004, Article 40004</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-870770b6c537b70a596e138efc77d9b7ade317e8caf25ab0552f7754a25bad4d3</citedby><cites>FETCH-LOGICAL-c531t-870770b6c537b70a596e138efc77d9b7ade317e8caf25ab0552f7754a25bad4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28054601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1346007$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Yu, Lingyu</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><title>Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.</description><subject>639/4077/4072/4062</subject><subject>639/624/400/1102</subject><subject>639/766/25/3927</subject><subject>acoustics</subject><subject>devices for energy harvesting</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nondestructive testing</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>slow light</subject><subject>Trapping</subject><subject>Velocity</subject><subject>Wave energy</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd9LIzEQx4OcqKgP9w_I4r3oQc_8bLIvgpTzFIoH4j2HbHa2Tdkma7Jb8b-_aLVUfZqZzIfvTOaL0HeCfxHM1EWK0HGMMd9BBxRzMaKM0m9b-T46TmmRCSxoyUm5h_apwoKPMTlAd_fG-So8FX00Xef8rAhNMbS5SsE7W8wGV0NdPJkVpML5ws5d7PJDNw_-FbDxOfWmLbrW9JCO0G5j2gTHb_EQ_bv-_TC5GU3__rmdXE1HVjDSj5TEUuJqnCtZSWxEOQbCFDRWyrqspKmBEQnKmoYKU2EhaCOl4IaKytS8Zofocq3bDdUSags-b9zqLrqlic86GKc_dryb61lYaUEJY1hlgdO1QEi908m6HuzcBu_B9pqwfBwsM3T2NiWGxwFSr5cuWWhb4yEMSRMlhFSlUC_oj0_oIgzR5xtkqiw5l5yOM3W-pmwMKRvXbDYmWL-4qTduZvZk-4sb8t27DPxcAym3_Azi1sgvav8Bgb-pNQ</recordid><startdate>20170105</startdate><enddate>20170105</enddate><creator>Tian, Zhenhua</creator><creator>Yu, Lingyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170105</creationdate><title>Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates</title><author>Tian, Zhenhua ; Yu, Lingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-870770b6c537b70a596e138efc77d9b7ade317e8caf25ab0552f7754a25bad4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/4077/4072/4062</topic><topic>639/624/400/1102</topic><topic>639/766/25/3927</topic><topic>acoustics</topic><topic>devices for energy harvesting</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nondestructive testing</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>slow light</topic><topic>Trapping</topic><topic>Velocity</topic><topic>Wave energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Yu, Lingyu</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhenhua</au><au>Yu, Lingyu</au><aucorp>Univ. of South Carolina, Columbia, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-05</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>40004</spage><epage>40004</epage><pages>40004-40004</pages><artnum>40004</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28054601</pmid><doi>10.1038/srep40004</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-01, Vol.7 (1), p.40004-40004, Article 40004
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5213308
source PubMed (Medline); Nature_OA刊; Springer_OA刊; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 639/4077/4072/4062
639/624/400/1102
639/766/25/3927
acoustics
devices for energy harvesting
Energy
Humanities and Social Sciences
multidisciplinary
Nondestructive testing
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Science
Science (multidisciplinary)
slow light
Trapping
Velocity
Wave energy
title Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainbow%20trapping%20of%20ultrasonic%20guided%20waves%20in%20chirped%20phononic%20crystal%20plates&rft.jtitle=Scientific%20reports&rft.au=Tian,%20Zhenhua&rft.aucorp=Univ.%20of%20South%20Carolina,%20Columbia,%20SC%20(United%20States)&rft.date=2017-01-05&rft.volume=7&rft.issue=1&rft.spage=40004&rft.epage=40004&rft.pages=40004-40004&rft.artnum=40004&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep40004&rft_dat=%3Cproquest_pubme%3E1899447426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899447426&rft_id=info:pmid/28054601&rfr_iscdi=true