A Motion-Based Feature for Event-Based Pattern Recognition
This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neur...
Gespeichert in:
Veröffentlicht in: | Frontiers in neuroscience 2017-01, Vol.10, p.594-594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 594 |
---|---|
container_issue | |
container_start_page | 594 |
container_title | Frontiers in neuroscience |
container_volume | 10 |
creator | Clady, Xavier Maro, Jean-Matthieu Barré, Sébastien Benosman, Ryad B |
description | This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. |
doi_str_mv | 10.3389/fnins.2016.00594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5209354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861575991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqAHae09opV7KYYPHHxubQ6WAEkBK1apqpd4srz_CosQGezcS_z27JETAydb4996M5yH0FfCYUiHPfGhCHhMM1RhjLtkHdAhVRUrG6f-P-zsTI3SU8x3GFRGMfEIjIgADxnCIzqfFz9g2MZQXOjtbzJ1uu-QKH1Mx27jQ7uq_ddu6FIo_zsRlaAbFZ3Tg9Sq7L7vzGP2bz_5eXpeLX1c3l9NFaRgXbVkLYvXEYG-AgakxsVBZYo2tuK-JFNo7b6i2XjgNWtaESU2ot0BAw4Qxeox-bH3vu3rtrOmHSnql7lOz1ulRRd2oty-huVXLuFGcYEn5YHC6Nbh9J7ueLtRQw8CYpIxuoGe_75ql-NC53Kp1k41brXRwscsKRAV8wqUc0G_v0LvYpdCvQhGKOefDunsKbymTYs7J-f0EgNUQonoOUQ0hqucQe8nJ6w_vBS-p0SfVUZg7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305550628</pqid></control><display><type>article</type><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</creator><creatorcontrib>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</creatorcontrib><description>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2016.00594</identifier><identifier>PMID: 28101001</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Life Sciences ; Neurons and Cognition ; Neuroscience ; Pattern recognition ; Retina ; Robotics ; Sensors</subject><ispartof>Frontiers in neuroscience, 2017-01, Vol.10, p.594-594</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Copyright © 2017 Clady, Maro, Barré and Benosman. 2017 Clady, Maro, Barré and Benosman</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</citedby><cites>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209354/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209354/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28101001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01449343$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Clady, Xavier</creatorcontrib><creatorcontrib>Maro, Jean-Matthieu</creatorcontrib><creatorcontrib>Barré, Sébastien</creatorcontrib><creatorcontrib>Benosman, Ryad B</creatorcontrib><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</description><subject>Life Sciences</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Pattern recognition</subject><subject>Retina</subject><subject>Robotics</subject><subject>Sensors</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1PGzEQxa2qqAHae09opV7KYYPHHxubQ6WAEkBK1apqpd4srz_CosQGezcS_z27JETAydb4996M5yH0FfCYUiHPfGhCHhMM1RhjLtkHdAhVRUrG6f-P-zsTI3SU8x3GFRGMfEIjIgADxnCIzqfFz9g2MZQXOjtbzJ1uu-QKH1Mx27jQ7uq_ddu6FIo_zsRlaAbFZ3Tg9Sq7L7vzGP2bz_5eXpeLX1c3l9NFaRgXbVkLYvXEYG-AgakxsVBZYo2tuK-JFNo7b6i2XjgNWtaESU2ot0BAw4Qxeox-bH3vu3rtrOmHSnql7lOz1ulRRd2oty-huVXLuFGcYEn5YHC6Nbh9J7ueLtRQw8CYpIxuoGe_75ql-NC53Kp1k41brXRwscsKRAV8wqUc0G_v0LvYpdCvQhGKOefDunsKbymTYs7J-f0EgNUQonoOUQ0hqucQe8nJ6w_vBS-p0SfVUZg7</recordid><startdate>20170104</startdate><enddate>20170104</enddate><creator>Clady, Xavier</creator><creator>Maro, Jean-Matthieu</creator><creator>Barré, Sébastien</creator><creator>Benosman, Ryad B</creator><general>Frontiers Research Foundation</general><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20170104</creationdate><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><author>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Life Sciences</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Pattern recognition</topic><topic>Retina</topic><topic>Robotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clady, Xavier</creatorcontrib><creatorcontrib>Maro, Jean-Matthieu</creatorcontrib><creatorcontrib>Barré, Sébastien</creatorcontrib><creatorcontrib>Benosman, Ryad B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clady, Xavier</au><au>Maro, Jean-Matthieu</au><au>Barré, Sébastien</au><au>Benosman, Ryad B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Motion-Based Feature for Event-Based Pattern Recognition</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2017-01-04</date><risdate>2017</risdate><volume>10</volume><spage>594</spage><epage>594</epage><pages>594-594</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>28101001</pmid><doi>10.3389/fnins.2016.00594</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2017-01, Vol.10, p.594-594 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5209354 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Life Sciences Neurons and Cognition Neuroscience Pattern recognition Retina Robotics Sensors |
title | A Motion-Based Feature for Event-Based Pattern Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Motion-Based%20Feature%20for%20Event-Based%20Pattern%20Recognition&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Clady,%20Xavier&rft.date=2017-01-04&rft.volume=10&rft.spage=594&rft.epage=594&rft.pages=594-594&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2016.00594&rft_dat=%3Cproquest_pubme%3E1861575991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305550628&rft_id=info:pmid/28101001&rfr_iscdi=true |