A Motion-Based Feature for Event-Based Pattern Recognition

This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience 2017-01, Vol.10, p.594-594
Hauptverfasser: Clady, Xavier, Maro, Jean-Matthieu, Barré, Sébastien, Benosman, Ryad B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue
container_start_page 594
container_title Frontiers in neuroscience
container_volume 10
creator Clady, Xavier
Maro, Jean-Matthieu
Barré, Sébastien
Benosman, Ryad B
description This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.
doi_str_mv 10.3389/fnins.2016.00594
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5209354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861575991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa2qqAHae09opV7KYYPHHxubQ6WAEkBK1apqpd4srz_CosQGezcS_z27JETAydb4996M5yH0FfCYUiHPfGhCHhMM1RhjLtkHdAhVRUrG6f-P-zsTI3SU8x3GFRGMfEIjIgADxnCIzqfFz9g2MZQXOjtbzJ1uu-QKH1Mx27jQ7uq_ddu6FIo_zsRlaAbFZ3Tg9Sq7L7vzGP2bz_5eXpeLX1c3l9NFaRgXbVkLYvXEYG-AgakxsVBZYo2tuK-JFNo7b6i2XjgNWtaESU2ot0BAw4Qxeox-bH3vu3rtrOmHSnql7lOz1ulRRd2oty-huVXLuFGcYEn5YHC6Nbh9J7ueLtRQw8CYpIxuoGe_75ql-NC53Kp1k41brXRwscsKRAV8wqUc0G_v0LvYpdCvQhGKOefDunsKbymTYs7J-f0EgNUQonoOUQ0hqucQe8nJ6w_vBS-p0SfVUZg7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305550628</pqid></control><display><type>article</type><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</creator><creatorcontrib>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</creatorcontrib><description>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2016.00594</identifier><identifier>PMID: 28101001</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Life Sciences ; Neurons and Cognition ; Neuroscience ; Pattern recognition ; Retina ; Robotics ; Sensors</subject><ispartof>Frontiers in neuroscience, 2017-01, Vol.10, p.594-594</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Copyright © 2017 Clady, Maro, Barré and Benosman. 2017 Clady, Maro, Barré and Benosman</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</citedby><cites>FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209354/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209354/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28101001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01449343$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Clady, Xavier</creatorcontrib><creatorcontrib>Maro, Jean-Matthieu</creatorcontrib><creatorcontrib>Barré, Sébastien</creatorcontrib><creatorcontrib>Benosman, Ryad B</creatorcontrib><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</description><subject>Life Sciences</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Pattern recognition</subject><subject>Retina</subject><subject>Robotics</subject><subject>Sensors</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1PGzEQxa2qqAHae09opV7KYYPHHxubQ6WAEkBK1apqpd4srz_CosQGezcS_z27JETAydb4996M5yH0FfCYUiHPfGhCHhMM1RhjLtkHdAhVRUrG6f-P-zsTI3SU8x3GFRGMfEIjIgADxnCIzqfFz9g2MZQXOjtbzJ1uu-QKH1Mx27jQ7uq_ddu6FIo_zsRlaAbFZ3Tg9Sq7L7vzGP2bz_5eXpeLX1c3l9NFaRgXbVkLYvXEYG-AgakxsVBZYo2tuK-JFNo7b6i2XjgNWtaESU2ot0BAw4Qxeox-bH3vu3rtrOmHSnql7lOz1ulRRd2oty-huVXLuFGcYEn5YHC6Nbh9J7ueLtRQw8CYpIxuoGe_75ql-NC53Kp1k41brXRwscsKRAV8wqUc0G_v0LvYpdCvQhGKOefDunsKbymTYs7J-f0EgNUQonoOUQ0hqucQe8nJ6w_vBS-p0SfVUZg7</recordid><startdate>20170104</startdate><enddate>20170104</enddate><creator>Clady, Xavier</creator><creator>Maro, Jean-Matthieu</creator><creator>Barré, Sébastien</creator><creator>Benosman, Ryad B</creator><general>Frontiers Research Foundation</general><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20170104</creationdate><title>A Motion-Based Feature for Event-Based Pattern Recognition</title><author>Clady, Xavier ; Maro, Jean-Matthieu ; Barré, Sébastien ; Benosman, Ryad B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-b82da7c0fc141cb02d16d2dcd65fb298afefc3adf8ea1a9b249a23fd121a17443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Life Sciences</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Pattern recognition</topic><topic>Retina</topic><topic>Robotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clady, Xavier</creatorcontrib><creatorcontrib>Maro, Jean-Matthieu</creatorcontrib><creatorcontrib>Barré, Sébastien</creatorcontrib><creatorcontrib>Benosman, Ryad B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clady, Xavier</au><au>Maro, Jean-Matthieu</au><au>Barré, Sébastien</au><au>Benosman, Ryad B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Motion-Based Feature for Event-Based Pattern Recognition</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2017-01-04</date><risdate>2017</risdate><volume>10</volume><spage>594</spage><epage>594</epage><pages>594-594</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>28101001</pmid><doi>10.3389/fnins.2016.00594</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2017-01, Vol.10, p.594-594
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5209354
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Life Sciences
Neurons and Cognition
Neuroscience
Pattern recognition
Retina
Robotics
Sensors
title A Motion-Based Feature for Event-Based Pattern Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Motion-Based%20Feature%20for%20Event-Based%20Pattern%20Recognition&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Clady,%20Xavier&rft.date=2017-01-04&rft.volume=10&rft.spage=594&rft.epage=594&rft.pages=594-594&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2016.00594&rft_dat=%3Cproquest_pubme%3E1861575991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305550628&rft_id=info:pmid/28101001&rfr_iscdi=true