Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET
Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activa...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-01, Vol.7 (1), p.39841, Article 39841 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 39841 |
container_title | Scientific reports |
container_volume | 7 |
creator | Perdios, Louis Lowe, Alan R. Saladino, Giorgio Bunney, Tom D. Thiyagarajan, Nethaji Alexandrov, Yuriy Dunsby, Christopher French, Paul M. W. Chin, Jason W. Gervasio, Francesco Luigi Tate, Edward W. Katan, Matilda |
description | Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur
via
a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis
in vitro,
combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications
in vivo. |
doi_str_mv | 10.1038/srep39841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899492538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</originalsourceid><addsrcrecordid>eNplkV9rFDEUxYMottQ--AUk4JPCaP7NbPIiyNJthYJQ6nPIZO6sqTPJmMws9L0f3NtuXVbMS244v5yb3EPIW84-cSb155JhkkYr_oKcCqbqSkghXh7VJ-S8lDuGqxZGcfOanAiNIqtXp-RhnWKf8ujmkKIb6JxdLOHxQFNPN5ebG_orRFeAOj-H3RNGM-zADdDR9p4iDFWZwIc-eLrE6OYlo5EbQ0x4KXSITynPkKmLHfJxOwAd0wB-wWJzc3H7hrzq3VDg_Hk_Iz82F7frq-r6--W39dfryiup56pTK97KrtbeNS1nrWqkkU0Lbc_MSoBpuG464VaNEi3Og_saZOeVkFrpXgsuz8iXve-0tCN0HiJ-d7BTDqPL9za5YP9VYvhpt2lna8GaRkg0eP9skNPvBcps79KScW7Fcm2MMqKWGqkPe8rnVDCe_tCBM_uYmT1khuy74ycdyL8JIfBxDxSU4hbyUcv_3P4A7F2ipg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899492538</pqid></control><display><type>article</type><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</creator><creatorcontrib>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</creatorcontrib><description>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur
via
a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis
in vitro,
combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications
in vivo.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep39841</identifier><identifier>PMID: 28045057</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/275 ; 639/624/1107/510 ; 96 ; Amino Acid Substitution ; Amino acids ; Fibroblast growth factor receptors ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Free energy ; Humanities and Social Sciences ; Humans ; Kinases ; Molecular Dynamics Simulation ; multidisciplinary ; Phosphorylation ; Protein Domains ; Protein kinase ; Protein Processing, Post-Translational ; Receptor, Fibroblast Growth Factor, Type 1 - chemistry ; Receptor, Fibroblast Growth Factor, Type 1 - genetics ; Receptor, Fibroblast Growth Factor, Type 1 - metabolism ; Science ; Single Molecule Imaging - methods ; Structure-function relationships</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.39841, Article 39841</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</citedby><cites>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206623/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206623/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28045057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perdios, Louis</creatorcontrib><creatorcontrib>Lowe, Alan R.</creatorcontrib><creatorcontrib>Saladino, Giorgio</creatorcontrib><creatorcontrib>Bunney, Tom D.</creatorcontrib><creatorcontrib>Thiyagarajan, Nethaji</creatorcontrib><creatorcontrib>Alexandrov, Yuriy</creatorcontrib><creatorcontrib>Dunsby, Christopher</creatorcontrib><creatorcontrib>French, Paul M. W.</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Gervasio, Francesco Luigi</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Katan, Matilda</creatorcontrib><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur
via
a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis
in vitro,
combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications
in vivo.</description><subject>631/92/275</subject><subject>639/624/1107/510</subject><subject>96</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Fibroblast growth factor receptors</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Free energy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Phosphorylation</subject><subject>Protein Domains</subject><subject>Protein kinase</subject><subject>Protein Processing, Post-Translational</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - chemistry</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</subject><subject>Science</subject><subject>Single Molecule Imaging - methods</subject><subject>Structure-function relationships</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9rFDEUxYMottQ--AUk4JPCaP7NbPIiyNJthYJQ6nPIZO6sqTPJmMws9L0f3NtuXVbMS244v5yb3EPIW84-cSb155JhkkYr_oKcCqbqSkghXh7VJ-S8lDuGqxZGcfOanAiNIqtXp-RhnWKf8ujmkKIb6JxdLOHxQFNPN5ebG_orRFeAOj-H3RNGM-zADdDR9p4iDFWZwIc-eLrE6OYlo5EbQ0x4KXSITynPkKmLHfJxOwAd0wB-wWJzc3H7hrzq3VDg_Hk_Iz82F7frq-r6--W39dfryiup56pTK97KrtbeNS1nrWqkkU0Lbc_MSoBpuG464VaNEi3Og_saZOeVkFrpXgsuz8iXve-0tCN0HiJ-d7BTDqPL9za5YP9VYvhpt2lna8GaRkg0eP9skNPvBcps79KScW7Fcm2MMqKWGqkPe8rnVDCe_tCBM_uYmT1khuy74ycdyL8JIfBxDxSU4hbyUcv_3P4A7F2ipg</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Perdios, Louis</creator><creator>Lowe, Alan R.</creator><creator>Saladino, Giorgio</creator><creator>Bunney, Tom D.</creator><creator>Thiyagarajan, Nethaji</creator><creator>Alexandrov, Yuriy</creator><creator>Dunsby, Christopher</creator><creator>French, Paul M. W.</creator><creator>Chin, Jason W.</creator><creator>Gervasio, Francesco Luigi</creator><creator>Tate, Edward W.</creator><creator>Katan, Matilda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20170103</creationdate><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><author>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/92/275</topic><topic>639/624/1107/510</topic><topic>96</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Fibroblast growth factor receptors</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Free energy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Phosphorylation</topic><topic>Protein Domains</topic><topic>Protein kinase</topic><topic>Protein Processing, Post-Translational</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - chemistry</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</topic><topic>Science</topic><topic>Single Molecule Imaging - methods</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perdios, Louis</creatorcontrib><creatorcontrib>Lowe, Alan R.</creatorcontrib><creatorcontrib>Saladino, Giorgio</creatorcontrib><creatorcontrib>Bunney, Tom D.</creatorcontrib><creatorcontrib>Thiyagarajan, Nethaji</creatorcontrib><creatorcontrib>Alexandrov, Yuriy</creatorcontrib><creatorcontrib>Dunsby, Christopher</creatorcontrib><creatorcontrib>French, Paul M. W.</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Gervasio, Francesco Luigi</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Katan, Matilda</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perdios, Louis</au><au>Lowe, Alan R.</au><au>Saladino, Giorgio</au><au>Bunney, Tom D.</au><au>Thiyagarajan, Nethaji</au><au>Alexandrov, Yuriy</au><au>Dunsby, Christopher</au><au>French, Paul M. W.</au><au>Chin, Jason W.</au><au>Gervasio, Francesco Luigi</au><au>Tate, Edward W.</au><au>Katan, Matilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-03</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>39841</spage><pages>39841-</pages><artnum>39841</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur
via
a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis
in vitro,
combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications
in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28045057</pmid><doi>10.1038/srep39841</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-01, Vol.7 (1), p.39841, Article 39841 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206623 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/92/275 639/624/1107/510 96 Amino Acid Substitution Amino acids Fibroblast growth factor receptors Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - methods Free energy Humanities and Social Sciences Humans Kinases Molecular Dynamics Simulation multidisciplinary Phosphorylation Protein Domains Protein kinase Protein Processing, Post-Translational Receptor, Fibroblast Growth Factor, Type 1 - chemistry Receptor, Fibroblast Growth Factor, Type 1 - genetics Receptor, Fibroblast Growth Factor, Type 1 - metabolism Science Single Molecule Imaging - methods Structure-function relationships |
title | Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20transition%20of%20FGFR%20kinase%20activation%20revealed%20by%20site-specific%20unnatural%20amino%20acid%20reporter%20and%20single%20molecule%20FRET&rft.jtitle=Scientific%20reports&rft.au=Perdios,%20Louis&rft.date=2017-01-03&rft.volume=7&rft.issue=1&rft.spage=39841&rft.pages=39841-&rft.artnum=39841&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep39841&rft_dat=%3Cproquest_pubme%3E1899492538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899492538&rft_id=info:pmid/28045057&rfr_iscdi=true |