Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-01, Vol.7 (1), p.39841, Article 39841
Hauptverfasser: Perdios, Louis, Lowe, Alan R., Saladino, Giorgio, Bunney, Tom D., Thiyagarajan, Nethaji, Alexandrov, Yuriy, Dunsby, Christopher, French, Paul M. W., Chin, Jason W., Gervasio, Francesco Luigi, Tate, Edward W., Katan, Matilda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 39841
container_title Scientific reports
container_volume 7
creator Perdios, Louis
Lowe, Alan R.
Saladino, Giorgio
Bunney, Tom D.
Thiyagarajan, Nethaji
Alexandrov, Yuriy
Dunsby, Christopher
French, Paul M. W.
Chin, Jason W.
Gervasio, Francesco Luigi
Tate, Edward W.
Katan, Matilda
description Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.
doi_str_mv 10.1038/srep39841
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899492538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</originalsourceid><addsrcrecordid>eNplkV9rFDEUxYMottQ--AUk4JPCaP7NbPIiyNJthYJQ6nPIZO6sqTPJmMws9L0f3NtuXVbMS244v5yb3EPIW84-cSb155JhkkYr_oKcCqbqSkghXh7VJ-S8lDuGqxZGcfOanAiNIqtXp-RhnWKf8ujmkKIb6JxdLOHxQFNPN5ebG_orRFeAOj-H3RNGM-zADdDR9p4iDFWZwIc-eLrE6OYlo5EbQ0x4KXSITynPkKmLHfJxOwAd0wB-wWJzc3H7hrzq3VDg_Hk_Iz82F7frq-r6--W39dfryiup56pTK97KrtbeNS1nrWqkkU0Lbc_MSoBpuG464VaNEi3Og_saZOeVkFrpXgsuz8iXve-0tCN0HiJ-d7BTDqPL9za5YP9VYvhpt2lna8GaRkg0eP9skNPvBcps79KScW7Fcm2MMqKWGqkPe8rnVDCe_tCBM_uYmT1khuy74ycdyL8JIfBxDxSU4hbyUcv_3P4A7F2ipg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899492538</pqid></control><display><type>article</type><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</creator><creatorcontrib>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</creatorcontrib><description>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep39841</identifier><identifier>PMID: 28045057</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/275 ; 639/624/1107/510 ; 96 ; Amino Acid Substitution ; Amino acids ; Fibroblast growth factor receptors ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Free energy ; Humanities and Social Sciences ; Humans ; Kinases ; Molecular Dynamics Simulation ; multidisciplinary ; Phosphorylation ; Protein Domains ; Protein kinase ; Protein Processing, Post-Translational ; Receptor, Fibroblast Growth Factor, Type 1 - chemistry ; Receptor, Fibroblast Growth Factor, Type 1 - genetics ; Receptor, Fibroblast Growth Factor, Type 1 - metabolism ; Science ; Single Molecule Imaging - methods ; Structure-function relationships</subject><ispartof>Scientific reports, 2017-01, Vol.7 (1), p.39841, Article 39841</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jan 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</citedby><cites>FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206623/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206623/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28045057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perdios, Louis</creatorcontrib><creatorcontrib>Lowe, Alan R.</creatorcontrib><creatorcontrib>Saladino, Giorgio</creatorcontrib><creatorcontrib>Bunney, Tom D.</creatorcontrib><creatorcontrib>Thiyagarajan, Nethaji</creatorcontrib><creatorcontrib>Alexandrov, Yuriy</creatorcontrib><creatorcontrib>Dunsby, Christopher</creatorcontrib><creatorcontrib>French, Paul M. W.</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Gervasio, Francesco Luigi</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Katan, Matilda</creatorcontrib><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.</description><subject>631/92/275</subject><subject>639/624/1107/510</subject><subject>96</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Fibroblast growth factor receptors</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Free energy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Phosphorylation</subject><subject>Protein Domains</subject><subject>Protein kinase</subject><subject>Protein Processing, Post-Translational</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - chemistry</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</subject><subject>Science</subject><subject>Single Molecule Imaging - methods</subject><subject>Structure-function relationships</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9rFDEUxYMottQ--AUk4JPCaP7NbPIiyNJthYJQ6nPIZO6sqTPJmMws9L0f3NtuXVbMS244v5yb3EPIW84-cSb155JhkkYr_oKcCqbqSkghXh7VJ-S8lDuGqxZGcfOanAiNIqtXp-RhnWKf8ujmkKIb6JxdLOHxQFNPN5ebG_orRFeAOj-H3RNGM-zADdDR9p4iDFWZwIc-eLrE6OYlo5EbQ0x4KXSITynPkKmLHfJxOwAd0wB-wWJzc3H7hrzq3VDg_Hk_Iz82F7frq-r6--W39dfryiup56pTK97KrtbeNS1nrWqkkU0Lbc_MSoBpuG464VaNEi3Og_saZOeVkFrpXgsuz8iXve-0tCN0HiJ-d7BTDqPL9za5YP9VYvhpt2lna8GaRkg0eP9skNPvBcps79KScW7Fcm2MMqKWGqkPe8rnVDCe_tCBM_uYmT1khuy74ycdyL8JIfBxDxSU4hbyUcv_3P4A7F2ipg</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Perdios, Louis</creator><creator>Lowe, Alan R.</creator><creator>Saladino, Giorgio</creator><creator>Bunney, Tom D.</creator><creator>Thiyagarajan, Nethaji</creator><creator>Alexandrov, Yuriy</creator><creator>Dunsby, Christopher</creator><creator>French, Paul M. W.</creator><creator>Chin, Jason W.</creator><creator>Gervasio, Francesco Luigi</creator><creator>Tate, Edward W.</creator><creator>Katan, Matilda</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20170103</creationdate><title>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</title><author>Perdios, Louis ; Lowe, Alan R. ; Saladino, Giorgio ; Bunney, Tom D. ; Thiyagarajan, Nethaji ; Alexandrov, Yuriy ; Dunsby, Christopher ; French, Paul M. W. ; Chin, Jason W. ; Gervasio, Francesco Luigi ; Tate, Edward W. ; Katan, Matilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d471b3d58ca6b10b463936bebf0972e96186d2a7642b8411c5e3dc423848f8213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/92/275</topic><topic>639/624/1107/510</topic><topic>96</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Fibroblast growth factor receptors</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Free energy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Phosphorylation</topic><topic>Protein Domains</topic><topic>Protein kinase</topic><topic>Protein Processing, Post-Translational</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - chemistry</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</topic><topic>Science</topic><topic>Single Molecule Imaging - methods</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perdios, Louis</creatorcontrib><creatorcontrib>Lowe, Alan R.</creatorcontrib><creatorcontrib>Saladino, Giorgio</creatorcontrib><creatorcontrib>Bunney, Tom D.</creatorcontrib><creatorcontrib>Thiyagarajan, Nethaji</creatorcontrib><creatorcontrib>Alexandrov, Yuriy</creatorcontrib><creatorcontrib>Dunsby, Christopher</creatorcontrib><creatorcontrib>French, Paul M. W.</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Gervasio, Francesco Luigi</creatorcontrib><creatorcontrib>Tate, Edward W.</creatorcontrib><creatorcontrib>Katan, Matilda</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perdios, Louis</au><au>Lowe, Alan R.</au><au>Saladino, Giorgio</au><au>Bunney, Tom D.</au><au>Thiyagarajan, Nethaji</au><au>Alexandrov, Yuriy</au><au>Dunsby, Christopher</au><au>French, Paul M. W.</au><au>Chin, Jason W.</au><au>Gervasio, Francesco Luigi</au><au>Tate, Edward W.</au><au>Katan, Matilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-01-03</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>39841</spage><pages>39841-</pages><artnum>39841</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28045057</pmid><doi>10.1038/srep39841</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-01, Vol.7 (1), p.39841, Article 39841
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206623
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/92/275
639/624/1107/510
96
Amino Acid Substitution
Amino acids
Fibroblast growth factor receptors
Fluorescence resonance energy transfer
Fluorescence Resonance Energy Transfer - methods
Free energy
Humanities and Social Sciences
Humans
Kinases
Molecular Dynamics Simulation
multidisciplinary
Phosphorylation
Protein Domains
Protein kinase
Protein Processing, Post-Translational
Receptor, Fibroblast Growth Factor, Type 1 - chemistry
Receptor, Fibroblast Growth Factor, Type 1 - genetics
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Science
Single Molecule Imaging - methods
Structure-function relationships
title Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20transition%20of%20FGFR%20kinase%20activation%20revealed%20by%20site-specific%20unnatural%20amino%20acid%20reporter%20and%20single%20molecule%20FRET&rft.jtitle=Scientific%20reports&rft.au=Perdios,%20Louis&rft.date=2017-01-03&rft.volume=7&rft.issue=1&rft.spage=39841&rft.pages=39841-&rft.artnum=39841&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep39841&rft_dat=%3Cproquest_pubme%3E1899492538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899492538&rft_id=info:pmid/28045057&rfr_iscdi=true