Computational design of a homotrimeric metalloprotein with a trisbipyridyl core
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2′-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assembli...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (52), p.15012-15017 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15017 |
---|---|
container_issue | 52 |
container_start_page | 15012 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Mills, Jeremy H. Sheffler, William Ener, Maraia E. Almhjell, Patrick J. Oberdorfer, Gustav Pereira, José Henrique Parmeggiani, Fabio Sankaran, Banumathi Zwart, Peter H. Baker, David |
description | Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2′-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe (Bpy-ala)₃]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the designmodel and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications. |
doi_str_mv | 10.1073/pnas.1600188113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26473020</jstor_id><sourcerecordid>26473020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-9adbe246a34bbe33b4fde81a1a2e01ca0d52dd509e094216cfb93b643cf882743</originalsourceid><addsrcrecordid>eNpd0Utv1DAUBWALgehQWLMCRbBhk_b6kcTeIKERL6lSN7C2HOem41FiB9spmn-PhyktsPLifj5-HEJeUrig0PHLxZt0QVsAKiWl_BHZUFC0boWCx2QDwLpaCibOyLOU9gCgGglPyRnrlChObsj1NszLmk12wZupGjC5G1-FsTLVLswhRzdjdLaaMZtpCksMGZ2vfrq8K6SMU--WQ3TDYapsiPicPBnNlPDF3XpOvn_6-G37pb66_vx1--GqtqKDXCsz9MhEa7joe-S8F-OAkhpqGAK1BoaGDUMDCkEJRls79or3reB2lJJ1gp-T96fcZe1nHCz6HM2kl3JfEw86GKf_nXi30zfhVjcM2oa1JeDNKSCk7HSyLqPd2eA92qwp5w0IVdC7u1Ni-LFiynp2yeI0GY9hTZrKEtVCx4707X90H9ZY_vS3Eow3jHdFXZ6UjSGliOP9jSnoY6P62Kh-aLTseP33Q-_9nwoLeHUC-5RDfJi3ouPAgP8CMTenmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854235237</pqid></control><display><type>article</type><title>Computational design of a homotrimeric metalloprotein with a trisbipyridyl core</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mills, Jeremy H. ; Sheffler, William ; Ener, Maraia E. ; Almhjell, Patrick J. ; Oberdorfer, Gustav ; Pereira, José Henrique ; Parmeggiani, Fabio ; Sankaran, Banumathi ; Zwart, Peter H. ; Baker, David</creator><creatorcontrib>Mills, Jeremy H. ; Sheffler, William ; Ener, Maraia E. ; Almhjell, Patrick J. ; Oberdorfer, Gustav ; Pereira, José Henrique ; Parmeggiani, Fabio ; Sankaran, Banumathi ; Zwart, Peter H. ; Baker, David ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2′-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe (Bpy-ala)₃]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the designmodel and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1600188113</identifier><identifier>PMID: 27940918</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino acids ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; computational protein design ; Crystal structure ; Crystallography ; metalloproteins ; Molecules ; Nanostructured materials ; noncanonical amino acids ; protein self-assembly ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (52), p.15012-15017</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 27, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-9adbe246a34bbe33b4fde81a1a2e01ca0d52dd509e094216cfb93b643cf882743</citedby><cites>FETCH-LOGICAL-c470t-9adbe246a34bbe33b4fde81a1a2e01ca0d52dd509e094216cfb93b643cf882743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26473020$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26473020$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27940918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1335049$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, Jeremy H.</creatorcontrib><creatorcontrib>Sheffler, William</creatorcontrib><creatorcontrib>Ener, Maraia E.</creatorcontrib><creatorcontrib>Almhjell, Patrick J.</creatorcontrib><creatorcontrib>Oberdorfer, Gustav</creatorcontrib><creatorcontrib>Pereira, José Henrique</creatorcontrib><creatorcontrib>Parmeggiani, Fabio</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Computational design of a homotrimeric metalloprotein with a trisbipyridyl core</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2′-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe (Bpy-ala)₃]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the designmodel and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>computational protein design</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>metalloproteins</subject><subject>Molecules</subject><subject>Nanostructured materials</subject><subject>noncanonical amino acids</subject><subject>protein self-assembly</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0Utv1DAUBWALgehQWLMCRbBhk_b6kcTeIKERL6lSN7C2HOem41FiB9spmn-PhyktsPLifj5-HEJeUrig0PHLxZt0QVsAKiWl_BHZUFC0boWCx2QDwLpaCibOyLOU9gCgGglPyRnrlChObsj1NszLmk12wZupGjC5G1-FsTLVLswhRzdjdLaaMZtpCksMGZ2vfrq8K6SMU--WQ3TDYapsiPicPBnNlPDF3XpOvn_6-G37pb66_vx1--GqtqKDXCsz9MhEa7joe-S8F-OAkhpqGAK1BoaGDUMDCkEJRls79or3reB2lJJ1gp-T96fcZe1nHCz6HM2kl3JfEw86GKf_nXi30zfhVjcM2oa1JeDNKSCk7HSyLqPd2eA92qwp5w0IVdC7u1Ni-LFiynp2yeI0GY9hTZrKEtVCx4707X90H9ZY_vS3Eow3jHdFXZ6UjSGliOP9jSnoY6P62Kh-aLTseP33Q-_9nwoLeHUC-5RDfJi3ouPAgP8CMTenmQ</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Mills, Jeremy H.</creator><creator>Sheffler, William</creator><creator>Ener, Maraia E.</creator><creator>Almhjell, Patrick J.</creator><creator>Oberdorfer, Gustav</creator><creator>Pereira, José Henrique</creator><creator>Parmeggiani, Fabio</creator><creator>Sankaran, Banumathi</creator><creator>Zwart, Peter H.</creator><creator>Baker, David</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161227</creationdate><title>Computational design of a homotrimeric metalloprotein with a trisbipyridyl core</title><author>Mills, Jeremy H. ; Sheffler, William ; Ener, Maraia E. ; Almhjell, Patrick J. ; Oberdorfer, Gustav ; Pereira, José Henrique ; Parmeggiani, Fabio ; Sankaran, Banumathi ; Zwart, Peter H. ; Baker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-9adbe246a34bbe33b4fde81a1a2e01ca0d52dd509e094216cfb93b643cf882743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>computational protein design</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>metalloproteins</topic><topic>Molecules</topic><topic>Nanostructured materials</topic><topic>noncanonical amino acids</topic><topic>protein self-assembly</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, Jeremy H.</creatorcontrib><creatorcontrib>Sheffler, William</creatorcontrib><creatorcontrib>Ener, Maraia E.</creatorcontrib><creatorcontrib>Almhjell, Patrick J.</creatorcontrib><creatorcontrib>Oberdorfer, Gustav</creatorcontrib><creatorcontrib>Pereira, José Henrique</creatorcontrib><creatorcontrib>Parmeggiani, Fabio</creatorcontrib><creatorcontrib>Sankaran, Banumathi</creatorcontrib><creatorcontrib>Zwart, Peter H.</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, Jeremy H.</au><au>Sheffler, William</au><au>Ener, Maraia E.</au><au>Almhjell, Patrick J.</au><au>Oberdorfer, Gustav</au><au>Pereira, José Henrique</au><au>Parmeggiani, Fabio</au><au>Sankaran, Banumathi</au><au>Zwart, Peter H.</au><au>Baker, David</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational design of a homotrimeric metalloprotein with a trisbipyridyl core</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>113</volume><issue>52</issue><spage>15012</spage><epage>15017</epage><pages>15012-15017</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2′-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe (Bpy-ala)₃]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the designmodel and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27940918</pmid><doi>10.1073/pnas.1600188113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (52), p.15012-15017 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206526 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 60 APPLIED LIFE SCIENCES Amino acids BASIC BIOLOGICAL SCIENCES Biological Sciences computational protein design Crystal structure Crystallography metalloproteins Molecules Nanostructured materials noncanonical amino acids protein self-assembly Proteins |
title | Computational design of a homotrimeric metalloprotein with a trisbipyridyl core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20design%20of%20a%20homotrimeric%20metalloprotein%20with%20a%20trisbipyridyl%20core&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mills,%20Jeremy%20H.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2016-12-27&rft.volume=113&rft.issue=52&rft.spage=15012&rft.epage=15017&rft.pages=15012-15017&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1600188113&rft_dat=%3Cjstor_pubme%3E26473020%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854235237&rft_id=info:pmid/27940918&rft_jstor_id=26473020&rfr_iscdi=true |