Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration

Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2016-12, Vol.311 (6), p.H1509-H1519
Hauptverfasser: Bellio, Michael A, Rodrigues, Claudia O, Landin, Ana Marie, Hatzistergos, Konstantinos E, Kuznetsov, Jeffim, Florea, Victoria, Valasaki, Krystalenia, Khan, Aisha, Hare, Joshua M, Schulman, Ivonne Hernandez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H1519
container_issue 6
container_start_page H1509
container_title American journal of physiology. Heart and circulatory physiology
container_volume 311
creator Bellio, Michael A
Rodrigues, Claudia O
Landin, Ana Marie
Hatzistergos, Konstantinos E
Kuznetsov, Jeffim
Florea, Victoria
Valasaki, Krystalenia
Khan, Aisha
Hare, Joshua M
Schulman, Ivonne Hernandez
description Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O concentrations. Physiological O levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O reduces senescence and promotes quiescence. Furthermore, physiological O levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O concentration on CSC biology and has important implications for refining stem cell therapies.
doi_str_mv 10.1152/ajpheart.00449.2016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868333553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-15eda635e790e1db4a7cd6c9e448ac4002ae661a6493b10edcf1713525bd36e23</originalsourceid><addsrcrecordid>eNqNUsFu1DAQtRCILgtfgIQscUFCWWyP7WwuSFVFAVEJDnC2vI6TeOXEwU5Qc-XL63TbCjhxskbz5nnevIfQS0p2lAr2Th_Hzuo47QjhvNoxQuUjtMkdVlAB1WO0ISChkBTEGXqW0pEQIkoJT9EZK2XFGRUb9PtbtyQXfGid0R7rocbdMoZrZ3C4Xlo7YBMGY4cp6smFAdeuaWzMtdPeLzjadvZ6sgl3c68zuPjiprfY6Fg7bXCabI-N9R6PMXiXJ08s6ze9a0_Vc_Sk0T7ZF3fvFv24_PD94lNx9fXj54vzq8IIYFPWZGstQdiyIpbWB65LU0tTWc732nBCmLZSUi15BQdKbG0aWmbtTBxqkJbBFr0_8Y7zoc_tW1FejdH1Oi4qaKf-7gyuU234pQQjEqDMBG_uCGL4Ods0qd6lVZ0ebJiTonu5BwAh4D-gICAvmg3aotf_QI9hjkO-REZxUWZz2UoIJ5SJIaVom4e9KVFrHNR9HNRtHNQahzz16k_JDzP3_sMN7E22Xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845704423</pqid></control><display><type>article</type><title>Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bellio, Michael A ; Rodrigues, Claudia O ; Landin, Ana Marie ; Hatzistergos, Konstantinos E ; Kuznetsov, Jeffim ; Florea, Victoria ; Valasaki, Krystalenia ; Khan, Aisha ; Hare, Joshua M ; Schulman, Ivonne Hernandez</creator><creatorcontrib>Bellio, Michael A ; Rodrigues, Claudia O ; Landin, Ana Marie ; Hatzistergos, Konstantinos E ; Kuznetsov, Jeffim ; Florea, Victoria ; Valasaki, Krystalenia ; Khan, Aisha ; Hare, Joshua M ; Schulman, Ivonne Hernandez</creatorcontrib><description><![CDATA[Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O concentrations. Physiological O levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O reduces senescence and promotes quiescence. Furthermore, physiological O levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O concentration on CSC biology and has important implications for refining stem cell therapies.]]></description><identifier>ISSN: 0363-6135</identifier><identifier>ISSN: 1522-1539</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00449.2016</identifier><identifier>PMID: 27694215</identifier><identifier>CODEN: AJPPDI</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Apoptosis ; beta-Galactosidase - metabolism ; Blotting, Western ; Cell Movement ; Cell Proliferation ; Cell Survival ; Cells, Cultured ; Cellular Senescence ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; Flow Cytometry ; Gene Expression Profiling ; Heart failure ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Integrative Cardiovascular Physiology and Pathophysiology ; Medical treatment ; Mice ; Mice, Transgenic ; Mitochondria, Heart - metabolism ; Myocardium - cytology ; Oxygen - metabolism ; Protein expression ; Proto-Oncogene Proteins c-kit - metabolism ; Real-Time Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Stem cells ; Stem Cells - metabolism ; Stem Cells - physiology</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2016-12, Vol.311 (6), p.H1509-H1519</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright American Physiological Society Dec 2016</rights><rights>Copyright © 2016 the American Physiological Society 2016 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-15eda635e790e1db4a7cd6c9e448ac4002ae661a6493b10edcf1713525bd36e23</citedby><cites>FETCH-LOGICAL-c532t-15eda635e790e1db4a7cd6c9e448ac4002ae661a6493b10edcf1713525bd36e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27694215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellio, Michael A</creatorcontrib><creatorcontrib>Rodrigues, Claudia O</creatorcontrib><creatorcontrib>Landin, Ana Marie</creatorcontrib><creatorcontrib>Hatzistergos, Konstantinos E</creatorcontrib><creatorcontrib>Kuznetsov, Jeffim</creatorcontrib><creatorcontrib>Florea, Victoria</creatorcontrib><creatorcontrib>Valasaki, Krystalenia</creatorcontrib><creatorcontrib>Khan, Aisha</creatorcontrib><creatorcontrib>Hare, Joshua M</creatorcontrib><creatorcontrib>Schulman, Ivonne Hernandez</creatorcontrib><title>Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description><![CDATA[Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O concentrations. Physiological O levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O reduces senescence and promotes quiescence. Furthermore, physiological O levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O concentration on CSC biology and has important implications for refining stem cell therapies.]]></description><subject>Animals</subject><subject>Apoptosis</subject><subject>beta-Galactosidase - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>Cellular Senescence</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>Flow Cytometry</subject><subject>Gene Expression Profiling</subject><subject>Heart failure</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Integrative Cardiovascular Physiology and Pathophysiology</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Myocardium - cytology</subject><subject>Oxygen - metabolism</subject><subject>Protein expression</subject><subject>Proto-Oncogene Proteins c-kit - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - physiology</subject><issn>0363-6135</issn><issn>1522-1539</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsFu1DAQtRCILgtfgIQscUFCWWyP7WwuSFVFAVEJDnC2vI6TeOXEwU5Qc-XL63TbCjhxskbz5nnevIfQS0p2lAr2Th_Hzuo47QjhvNoxQuUjtMkdVlAB1WO0ISChkBTEGXqW0pEQIkoJT9EZK2XFGRUb9PtbtyQXfGid0R7rocbdMoZrZ3C4Xlo7YBMGY4cp6smFAdeuaWzMtdPeLzjadvZ6sgl3c68zuPjiprfY6Fg7bXCabI-N9R6PMXiXJ08s6ze9a0_Vc_Sk0T7ZF3fvFv24_PD94lNx9fXj54vzq8IIYFPWZGstQdiyIpbWB65LU0tTWc732nBCmLZSUi15BQdKbG0aWmbtTBxqkJbBFr0_8Y7zoc_tW1FejdH1Oi4qaKf-7gyuU234pQQjEqDMBG_uCGL4Ods0qd6lVZ0ebJiTonu5BwAh4D-gICAvmg3aotf_QI9hjkO-REZxUWZz2UoIJ5SJIaVom4e9KVFrHNR9HNRtHNQahzz16k_JDzP3_sMN7E22Xw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Bellio, Michael A</creator><creator>Rodrigues, Claudia O</creator><creator>Landin, Ana Marie</creator><creator>Hatzistergos, Konstantinos E</creator><creator>Kuznetsov, Jeffim</creator><creator>Florea, Victoria</creator><creator>Valasaki, Krystalenia</creator><creator>Khan, Aisha</creator><creator>Hare, Joshua M</creator><creator>Schulman, Ivonne Hernandez</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration</title><author>Bellio, Michael A ; Rodrigues, Claudia O ; Landin, Ana Marie ; Hatzistergos, Konstantinos E ; Kuznetsov, Jeffim ; Florea, Victoria ; Valasaki, Krystalenia ; Khan, Aisha ; Hare, Joshua M ; Schulman, Ivonne Hernandez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-15eda635e790e1db4a7cd6c9e448ac4002ae661a6493b10edcf1713525bd36e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>beta-Galactosidase - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>Cellular Senescence</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>Flow Cytometry</topic><topic>Gene Expression Profiling</topic><topic>Heart failure</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Integrative Cardiovascular Physiology and Pathophysiology</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Myocardium - cytology</topic><topic>Oxygen - metabolism</topic><topic>Protein expression</topic><topic>Proto-Oncogene Proteins c-kit - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellio, Michael A</creatorcontrib><creatorcontrib>Rodrigues, Claudia O</creatorcontrib><creatorcontrib>Landin, Ana Marie</creatorcontrib><creatorcontrib>Hatzistergos, Konstantinos E</creatorcontrib><creatorcontrib>Kuznetsov, Jeffim</creatorcontrib><creatorcontrib>Florea, Victoria</creatorcontrib><creatorcontrib>Valasaki, Krystalenia</creatorcontrib><creatorcontrib>Khan, Aisha</creatorcontrib><creatorcontrib>Hare, Joshua M</creatorcontrib><creatorcontrib>Schulman, Ivonne Hernandez</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellio, Michael A</au><au>Rodrigues, Claudia O</au><au>Landin, Ana Marie</au><au>Hatzistergos, Konstantinos E</au><au>Kuznetsov, Jeffim</au><au>Florea, Victoria</au><au>Valasaki, Krystalenia</au><au>Khan, Aisha</au><au>Hare, Joshua M</au><au>Schulman, Ivonne Hernandez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>311</volume><issue>6</issue><spage>H1509</spage><epage>H1519</epage><pages>H1509-H1519</pages><issn>0363-6135</issn><issn>1522-1539</issn><eissn>1522-1539</eissn><coden>AJPPDI</coden><abstract><![CDATA[Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O concentrations. Physiological O levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O reduces senescence and promotes quiescence. Furthermore, physiological O levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O concentration on CSC biology and has important implications for refining stem cell therapies.]]></abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>27694215</pmid><doi>10.1152/ajpheart.00449.2016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6135
ispartof American journal of physiology. Heart and circulatory physiology, 2016-12, Vol.311 (6), p.H1509-H1519
issn 0363-6135
1522-1539
1522-1539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206337
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Apoptosis
beta-Galactosidase - metabolism
Blotting, Western
Cell Movement
Cell Proliferation
Cell Survival
Cells, Cultured
Cellular Senescence
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Flow Cytometry
Gene Expression Profiling
Heart failure
Humans
Hypoxia
Hypoxia - metabolism
Hypoxia - physiopathology
Integrative Cardiovascular Physiology and Pathophysiology
Medical treatment
Mice
Mice, Transgenic
Mitochondria, Heart - metabolism
Myocardium - cytology
Oxygen - metabolism
Protein expression
Proto-Oncogene Proteins c-kit - metabolism
Real-Time Polymerase Chain Reaction
RNA, Messenger - metabolism
Stem cells
Stem Cells - metabolism
Stem Cells - physiology
title Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20hypoxic%20oxygen%20concentration%20differentially%20regulates%20human%20c-Kit+%20cardiac%20stem%20cell%20proliferation%20and%20migration&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Bellio,%20Michael%20A&rft.date=2016-12-01&rft.volume=311&rft.issue=6&rft.spage=H1509&rft.epage=H1519&rft.pages=H1509-H1519&rft.issn=0363-6135&rft.eissn=1522-1539&rft.coden=AJPPDI&rft_id=info:doi/10.1152/ajpheart.00449.2016&rft_dat=%3Cproquest_pubme%3E1868333553%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845704423&rft_id=info:pmid/27694215&rfr_iscdi=true