Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels
Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2016-12, Vol.311 (6), p.C920-C930 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C930 |
---|---|
container_issue | 6 |
container_start_page | C920 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 311 |
creator | Matthewman, Cristina Miller-Fleming, Tyne W Miller, Rd, David M Bianchi, Laura |
description | Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca
overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na
and Ca
, raising the possibility that direct Ca
influx through these channels contributes to intracellular Ca
overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca
permeable, yet it is neurotoxic, suggesting that Na
influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca
block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca
permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na
conductance vs. Ca
permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca
-permeable DEG/ENaC channels, both Ca
permeability and Na
conductance contribute to toxicity. However, for Ca
-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na
conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels. |
doi_str_mv | 10.1152/ajpcell.00247.2016 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27760755</sourcerecordid><originalsourceid>FETCH-LOGICAL-p240t-83327d1006500efb28e9a2977c7403acdd2e0e9d7c9beb51415a51209c5fe8223</originalsourceid><addsrcrecordid>eNpVkMtOwzAURC0EoqXwAyyQ91Xa6-s4bjZIKJSHVJUNrKMb26WuUjfKoyJ_TysegtUsZuaMNIxdC5gIoXBKm8q4spwAYKwnCCI5YcODgZFQiTxlQ5CJjBIRywG7aJoNAMSYpOdsgFonoJUasiIjHPPK1VtHhS9923MKli9pzM0u2M60FIzjPvDjVFdSzdvdhzfHoKGucZYXPV_3BwKZ1u8dv58_TudLyrhZUwiubC7Z2YrKxl1964i9Pcxfs6do8fL4nN0togpjaKOZlKitAEgUgFsVOHMpYaq10TFIMtaiA5dabdLCFUrEQpESCKlRKzdDlCN2-8WtumLrrHGhranMq9pvqe7zHfn8vxP8On_f7XOFkEjQB8DNX8Bv8-ct-QltN27S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</creator><creatorcontrib>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</creatorcontrib><description>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca
overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na
and Ca
, raising the possibility that direct Ca
influx through these channels contributes to intracellular Ca
overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca
permeable, yet it is neurotoxic, suggesting that Na
influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca
block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca
permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na
conductance vs. Ca
permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca
-permeable DEG/ENaC channels, both Ca
permeability and Na
conductance contribute to toxicity. However, for Ca
-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na
conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00247.2016</identifier><identifier>PMID: 27760755</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - metabolism ; Calcium - metabolism ; Cell Death - physiology ; Cells, Cultured ; Epithelial Sodium Channels - metabolism ; Membrane Proteins - metabolism ; Oocytes - metabolism ; Permeability ; Sodium - metabolism ; Sodium Channels - metabolism ; Xenopus laevis - metabolism</subject><ispartof>American Journal of Physiology: Cell Physiology, 2016-12, Vol.311 (6), p.C920-C930</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright © 2016 the American Physiological Society 2016 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthewman, Cristina</creatorcontrib><creatorcontrib>Miller-Fleming, Tyne W</creatorcontrib><creatorcontrib>Miller, Rd, David M</creatorcontrib><creatorcontrib>Bianchi, Laura</creatorcontrib><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca
overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na
and Ca
, raising the possibility that direct Ca
influx through these channels contributes to intracellular Ca
overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca
permeable, yet it is neurotoxic, suggesting that Na
influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca
block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca
permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na
conductance vs. Ca
permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca
-permeable DEG/ENaC channels, both Ca
permeability and Na
conductance contribute to toxicity. However, for Ca
-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na
conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</description><subject>Animals</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Calcium - metabolism</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Epithelial Sodium Channels - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Permeability</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - metabolism</subject><subject>Xenopus laevis - metabolism</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtOwzAURC0EoqXwAyyQ91Xa6-s4bjZIKJSHVJUNrKMb26WuUjfKoyJ_TysegtUsZuaMNIxdC5gIoXBKm8q4spwAYKwnCCI5YcODgZFQiTxlQ5CJjBIRywG7aJoNAMSYpOdsgFonoJUasiIjHPPK1VtHhS9923MKli9pzM0u2M60FIzjPvDjVFdSzdvdhzfHoKGucZYXPV_3BwKZ1u8dv58_TudLyrhZUwiubC7Z2YrKxl1964i9Pcxfs6do8fL4nN0togpjaKOZlKitAEgUgFsVOHMpYaq10TFIMtaiA5dabdLCFUrEQpESCKlRKzdDlCN2-8WtumLrrHGhranMq9pvqe7zHfn8vxP8On_f7XOFkEjQB8DNX8Bv8-ct-QltN27S</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Matthewman, Cristina</creator><creator>Miller-Fleming, Tyne W</creator><creator>Miller, Rd, David M</creator><creator>Bianchi, Laura</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><author>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p240t-83327d1006500efb28e9a2977c7403acdd2e0e9d7c9beb51415a51209c5fe8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Calcium - metabolism</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Epithelial Sodium Channels - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Permeability</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - metabolism</topic><topic>Xenopus laevis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthewman, Cristina</creatorcontrib><creatorcontrib>Miller-Fleming, Tyne W</creatorcontrib><creatorcontrib>Miller, Rd, David M</creatorcontrib><creatorcontrib>Bianchi, Laura</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthewman, Cristina</au><au>Miller-Fleming, Tyne W</au><au>Miller, Rd, David M</au><au>Bianchi, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>311</volume><issue>6</issue><spage>C920</spage><epage>C930</epage><pages>C920-C930</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><abstract>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca
overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na
and Ca
, raising the possibility that direct Ca
influx through these channels contributes to intracellular Ca
overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca
permeable, yet it is neurotoxic, suggesting that Na
influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca
block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca
permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na
conductance vs. Ca
permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca
-permeable DEG/ENaC channels, both Ca
permeability and Na
conductance contribute to toxicity. However, for Ca
-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na
conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>27760755</pmid><doi>10.1152/ajpcell.00247.2016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2016-12, Vol.311 (6), p.C920-C930 |
issn | 0363-6143 1522-1563 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206307 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - metabolism Calcium - metabolism Cell Death - physiology Cells, Cultured Epithelial Sodium Channels - metabolism Membrane Proteins - metabolism Oocytes - metabolism Permeability Sodium - metabolism Sodium Channels - metabolism Xenopus laevis - metabolism |
title | Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ca2+%20permeability%20and%20Na+%20conductance%20in%20cellular%20toxicity%20caused%20by%20hyperactive%20DEG/ENaC%20channels&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Matthewman,%20Cristina&rft.date=2016-12-01&rft.volume=311&rft.issue=6&rft.spage=C920&rft.epage=C930&rft.pages=C920-C930&rft.issn=0363-6143&rft.eissn=1522-1563&rft_id=info:doi/10.1152/ajpcell.00247.2016&rft_dat=%3Cpubmed%3E27760755%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27760755&rfr_iscdi=true |