Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels

Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2016-12, Vol.311 (6), p.C920-C930
Hauptverfasser: Matthewman, Cristina, Miller-Fleming, Tyne W, Miller, Rd, David M, Bianchi, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C930
container_issue 6
container_start_page C920
container_title American Journal of Physiology: Cell Physiology
container_volume 311
creator Matthewman, Cristina
Miller-Fleming, Tyne W
Miller, Rd, David M
Bianchi, Laura
description Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular Ca overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca permeable, yet it is neurotoxic, suggesting that Na influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na conductance vs. Ca permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca -permeable DEG/ENaC channels, both Ca permeability and Na conductance contribute to toxicity. However, for Ca -impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.
doi_str_mv 10.1152/ajpcell.00247.2016
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27760755</sourcerecordid><originalsourceid>FETCH-LOGICAL-p240t-83327d1006500efb28e9a2977c7403acdd2e0e9d7c9beb51415a51209c5fe8223</originalsourceid><addsrcrecordid>eNpVkMtOwzAURC0EoqXwAyyQ91Xa6-s4bjZIKJSHVJUNrKMb26WuUjfKoyJ_TysegtUsZuaMNIxdC5gIoXBKm8q4spwAYKwnCCI5YcODgZFQiTxlQ5CJjBIRywG7aJoNAMSYpOdsgFonoJUasiIjHPPK1VtHhS9923MKli9pzM0u2M60FIzjPvDjVFdSzdvdhzfHoKGucZYXPV_3BwKZ1u8dv58_TudLyrhZUwiubC7Z2YrKxl1964i9Pcxfs6do8fL4nN0togpjaKOZlKitAEgUgFsVOHMpYaq10TFIMtaiA5dabdLCFUrEQpESCKlRKzdDlCN2-8WtumLrrHGhranMq9pvqe7zHfn8vxP8On_f7XOFkEjQB8DNX8Bv8-ct-QltN27S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</creator><creatorcontrib>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</creatorcontrib><description>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular Ca overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca permeable, yet it is neurotoxic, suggesting that Na influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na conductance vs. Ca permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca -permeable DEG/ENaC channels, both Ca permeability and Na conductance contribute to toxicity. However, for Ca -impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00247.2016</identifier><identifier>PMID: 27760755</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - metabolism ; Calcium - metabolism ; Cell Death - physiology ; Cells, Cultured ; Epithelial Sodium Channels - metabolism ; Membrane Proteins - metabolism ; Oocytes - metabolism ; Permeability ; Sodium - metabolism ; Sodium Channels - metabolism ; Xenopus laevis - metabolism</subject><ispartof>American Journal of Physiology: Cell Physiology, 2016-12, Vol.311 (6), p.C920-C930</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright © 2016 the American Physiological Society 2016 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthewman, Cristina</creatorcontrib><creatorcontrib>Miller-Fleming, Tyne W</creatorcontrib><creatorcontrib>Miller, Rd, David M</creatorcontrib><creatorcontrib>Bianchi, Laura</creatorcontrib><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular Ca overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca permeable, yet it is neurotoxic, suggesting that Na influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na conductance vs. Ca permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca -permeable DEG/ENaC channels, both Ca permeability and Na conductance contribute to toxicity. However, for Ca -impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</description><subject>Animals</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Calcium - metabolism</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Epithelial Sodium Channels - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Permeability</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - metabolism</subject><subject>Xenopus laevis - metabolism</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtOwzAURC0EoqXwAyyQ91Xa6-s4bjZIKJSHVJUNrKMb26WuUjfKoyJ_TysegtUsZuaMNIxdC5gIoXBKm8q4spwAYKwnCCI5YcODgZFQiTxlQ5CJjBIRywG7aJoNAMSYpOdsgFonoJUasiIjHPPK1VtHhS9923MKli9pzM0u2M60FIzjPvDjVFdSzdvdhzfHoKGucZYXPV_3BwKZ1u8dv58_TudLyrhZUwiubC7Z2YrKxl1964i9Pcxfs6do8fL4nN0togpjaKOZlKitAEgUgFsVOHMpYaq10TFIMtaiA5dabdLCFUrEQpESCKlRKzdDlCN2-8WtumLrrHGhranMq9pvqe7zHfn8vxP8On_f7XOFkEjQB8DNX8Bv8-ct-QltN27S</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Matthewman, Cristina</creator><creator>Miller-Fleming, Tyne W</creator><creator>Miller, Rd, David M</creator><creator>Bianchi, Laura</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</title><author>Matthewman, Cristina ; Miller-Fleming, Tyne W ; Miller, Rd, David M ; Bianchi, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p240t-83327d1006500efb28e9a2977c7403acdd2e0e9d7c9beb51415a51209c5fe8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Calcium - metabolism</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Epithelial Sodium Channels - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Permeability</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - metabolism</topic><topic>Xenopus laevis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthewman, Cristina</creatorcontrib><creatorcontrib>Miller-Fleming, Tyne W</creatorcontrib><creatorcontrib>Miller, Rd, David M</creatorcontrib><creatorcontrib>Bianchi, Laura</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthewman, Cristina</au><au>Miller-Fleming, Tyne W</au><au>Miller, Rd, David M</au><au>Bianchi, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>311</volume><issue>6</issue><spage>C920</spage><epage>C930</epage><pages>C920-C930</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><abstract>Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na and Ca , raising the possibility that direct Ca influx through these channels contributes to intracellular Ca overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca permeable, yet it is neurotoxic, suggesting that Na influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na conductance vs. Ca permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca -permeable DEG/ENaC channels, both Ca permeability and Na conductance contribute to toxicity. However, for Ca -impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>27760755</pmid><doi>10.1152/ajpcell.00247.2016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2016-12, Vol.311 (6), p.C920-C930
issn 0363-6143
1522-1563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206307
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - metabolism
Calcium - metabolism
Cell Death - physiology
Cells, Cultured
Epithelial Sodium Channels - metabolism
Membrane Proteins - metabolism
Oocytes - metabolism
Permeability
Sodium - metabolism
Sodium Channels - metabolism
Xenopus laevis - metabolism
title Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ca2+%20permeability%20and%20Na+%20conductance%20in%20cellular%20toxicity%20caused%20by%20hyperactive%20DEG/ENaC%20channels&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Matthewman,%20Cristina&rft.date=2016-12-01&rft.volume=311&rft.issue=6&rft.spage=C920&rft.epage=C930&rft.pages=C920-C930&rft.issn=0363-6143&rft.eissn=1522-1563&rft_id=info:doi/10.1152/ajpcell.00247.2016&rft_dat=%3Cpubmed%3E27760755%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27760755&rfr_iscdi=true