Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal

Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2016-12, Vol.30 (23), p.2637-2648
Hauptverfasser: Kanatsu-Shinohara, Mito, Tanaka, Takashi, Ogonuki, Narumi, Ogura, Atsuo, Morimoto, Hiroko, Cheng, Pei Feng, Eisenman, Robert N, Trumpp, Andreas, Shinohara, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2648
container_issue 23
container_start_page 2637
container_title Genes & development
container_volume 30
creator Kanatsu-Shinohara, Mito
Tanaka, Takashi
Ogonuki, Narumi
Ogura, Atsuo
Morimoto, Hiroko
Cheng, Pei Feng
Eisenman, Robert N
Trumpp, Andreas
Shinohara, Takashi
description Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
doi_str_mv 10.1101/gad.287045.116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5204355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852781972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-f3780bc6255baa51dd503873452b5c57fce89dfb87da2bf48a0e3c8a2102824b3</originalsourceid><addsrcrecordid>eNqNUctKA0EQHETR-Lh6lD162aTnPXsRJPiCiAh6HmZne5OVfcSdjZK_d0Ki6M1D0910dVFFEXJOYUwp0MncFWNmNAgZd7VHRlSKLJVC630yApNBmnGVHZHjEN4AQIFSh-SIGQCtjRqR58e1n8Rq0waLyg1YJPN67bt6HaqQYLtwrceQNN0qYBKW2Ddu6OZdW7k6CQM2icc6TliXaY8tfrr6lByUrg54tusn5PX25mV6n86e7h6m17PUS86HtOTaQO4VkzJ3TtKikMCN5kKyXHqpS48mK8rc6MKxvBTGAXJvHKPADBM5PyFXW97lKo_aPbZD72q77KvG9Wvbucr-vbTVws67DysZCC5lJLjcEfTd-wrDYJsqbOy4FqNdS43MhGZCsf9AmTY00xvoeAv1fRdCj-WPIgp2E5mNkdltZHFX8eHit48f-HdG_AuuiJPP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852781972</pqid></control><display><type>article</type><title>Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kanatsu-Shinohara, Mito ; Tanaka, Takashi ; Ogonuki, Narumi ; Ogura, Atsuo ; Morimoto, Hiroko ; Cheng, Pei Feng ; Eisenman, Robert N ; Trumpp, Andreas ; Shinohara, Takashi</creator><creatorcontrib>Kanatsu-Shinohara, Mito ; Tanaka, Takashi ; Ogonuki, Narumi ; Ogura, Atsuo ; Morimoto, Hiroko ; Cheng, Pei Feng ; Eisenman, Robert N ; Trumpp, Andreas ; Shinohara, Takashi</creatorcontrib><description>Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.287045.116</identifier><identifier>PMID: 28007786</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>3-Phosphoinositide-Dependent Protein Kinases - metabolism ; Animals ; Cell Division - genetics ; Cell Proliferation - genetics ; Cell Self Renewal - genetics ; Gene Expression Regulation, Developmental - genetics ; Gene Knockout Techniques ; Glycolysis - genetics ; Male ; Mice ; Mice, Inbred C57BL ; N-Myc Proto-Oncogene Protein - genetics ; N-Myc Proto-Oncogene Protein - metabolism ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Research Paper ; RNA Splicing Factors - metabolism ; Spermatogonia - cytology ; Stem Cells - enzymology ; Stem Cells - metabolism</subject><ispartof>Genes &amp; development, 2016-12, Vol.30 (23), p.2637-2648</ispartof><rights>2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-f3780bc6255baa51dd503873452b5c57fce89dfb87da2bf48a0e3c8a2102824b3</citedby><cites>FETCH-LOGICAL-c533t-f3780bc6255baa51dd503873452b5c57fce89dfb87da2bf48a0e3c8a2102824b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28007786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanatsu-Shinohara, Mito</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Ogonuki, Narumi</creatorcontrib><creatorcontrib>Ogura, Atsuo</creatorcontrib><creatorcontrib>Morimoto, Hiroko</creatorcontrib><creatorcontrib>Cheng, Pei Feng</creatorcontrib><creatorcontrib>Eisenman, Robert N</creatorcontrib><creatorcontrib>Trumpp, Andreas</creatorcontrib><creatorcontrib>Shinohara, Takashi</creatorcontrib><title>Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.</description><subject>3-Phosphoinositide-Dependent Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Cell Division - genetics</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Self Renewal - genetics</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Knockout Techniques</subject><subject>Glycolysis - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>N-Myc Proto-Oncogene Protein - genetics</subject><subject>N-Myc Proto-Oncogene Protein - metabolism</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Research Paper</subject><subject>RNA Splicing Factors - metabolism</subject><subject>Spermatogonia - cytology</subject><subject>Stem Cells - enzymology</subject><subject>Stem Cells - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUctKA0EQHETR-Lh6lD162aTnPXsRJPiCiAh6HmZne5OVfcSdjZK_d0Ki6M1D0910dVFFEXJOYUwp0MncFWNmNAgZd7VHRlSKLJVC630yApNBmnGVHZHjEN4AQIFSh-SIGQCtjRqR58e1n8Rq0waLyg1YJPN67bt6HaqQYLtwrceQNN0qYBKW2Ddu6OZdW7k6CQM2icc6TliXaY8tfrr6lByUrg54tusn5PX25mV6n86e7h6m17PUS86HtOTaQO4VkzJ3TtKikMCN5kKyXHqpS48mK8rc6MKxvBTGAXJvHKPADBM5PyFXW97lKo_aPbZD72q77KvG9Wvbucr-vbTVws67DysZCC5lJLjcEfTd-wrDYJsqbOy4FqNdS43MhGZCsf9AmTY00xvoeAv1fRdCj-WPIgp2E5mNkdltZHFX8eHit48f-HdG_AuuiJPP</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kanatsu-Shinohara, Mito</creator><creator>Tanaka, Takashi</creator><creator>Ogonuki, Narumi</creator><creator>Ogura, Atsuo</creator><creator>Morimoto, Hiroko</creator><creator>Cheng, Pei Feng</creator><creator>Eisenman, Robert N</creator><creator>Trumpp, Andreas</creator><creator>Shinohara, Takashi</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal</title><author>Kanatsu-Shinohara, Mito ; Tanaka, Takashi ; Ogonuki, Narumi ; Ogura, Atsuo ; Morimoto, Hiroko ; Cheng, Pei Feng ; Eisenman, Robert N ; Trumpp, Andreas ; Shinohara, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-f3780bc6255baa51dd503873452b5c57fce89dfb87da2bf48a0e3c8a2102824b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3-Phosphoinositide-Dependent Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Cell Division - genetics</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Self Renewal - genetics</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Knockout Techniques</topic><topic>Glycolysis - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>N-Myc Proto-Oncogene Protein - genetics</topic><topic>N-Myc Proto-Oncogene Protein - metabolism</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Research Paper</topic><topic>RNA Splicing Factors - metabolism</topic><topic>Spermatogonia - cytology</topic><topic>Stem Cells - enzymology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanatsu-Shinohara, Mito</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Ogonuki, Narumi</creatorcontrib><creatorcontrib>Ogura, Atsuo</creatorcontrib><creatorcontrib>Morimoto, Hiroko</creatorcontrib><creatorcontrib>Cheng, Pei Feng</creatorcontrib><creatorcontrib>Eisenman, Robert N</creatorcontrib><creatorcontrib>Trumpp, Andreas</creatorcontrib><creatorcontrib>Shinohara, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanatsu-Shinohara, Mito</au><au>Tanaka, Takashi</au><au>Ogonuki, Narumi</au><au>Ogura, Atsuo</au><au>Morimoto, Hiroko</au><au>Cheng, Pei Feng</au><au>Eisenman, Robert N</au><au>Trumpp, Andreas</au><au>Shinohara, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>30</volume><issue>23</issue><spage>2637</spage><epage>2648</epage><pages>2637-2648</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28007786</pmid><doi>10.1101/gad.287045.116</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2016-12, Vol.30 (23), p.2637-2648
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5204355
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 3-Phosphoinositide-Dependent Protein Kinases - metabolism
Animals
Cell Division - genetics
Cell Proliferation - genetics
Cell Self Renewal - genetics
Gene Expression Regulation, Developmental - genetics
Gene Knockout Techniques
Glycolysis - genetics
Male
Mice
Mice, Inbred C57BL
N-Myc Proto-Oncogene Protein - genetics
N-Myc Proto-Oncogene Protein - metabolism
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Research Paper
RNA Splicing Factors - metabolism
Spermatogonia - cytology
Stem Cells - enzymology
Stem Cells - metabolism
title Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myc/Mycn-mediated%20glycolysis%20enhances%20mouse%20spermatogonial%20stem%20cell%20self-renewal&rft.jtitle=Genes%20&%20development&rft.au=Kanatsu-Shinohara,%20Mito&rft.date=2016-12-01&rft.volume=30&rft.issue=23&rft.spage=2637&rft.epage=2648&rft.pages=2637-2648&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.287045.116&rft_dat=%3Cproquest_pubme%3E1852781972%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852781972&rft_id=info:pmid/28007786&rfr_iscdi=true