Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution

Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2017-01, Vol.83 (2), p.E02736
Hauptverfasser: Creamer, Kaitlin E, Ditmars, Frederick S, Basting, Preston J, Kunka, Karina S, Hamdallah, Issam N, Bush, Sean P, Scott, Zachary, He, Amanda, Penix, Stephanie R, Gonzales, Alexandra S, Eder, Elizabeth K, Camperchioli, Dominic W, Berndt, Adama, Clark, Michelle W, Rouhier, Kerry A, Slonczewski, Joan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page E02736
container_title Applied and environmental microbiology
container_volume 83
creator Creamer, Kaitlin E
Ditmars, Frederick S
Basting, Preston J
Kunka, Karina S
Hamdallah, Issam N
Bush, Sean P
Scott, Zachary
He, Amanda
Penix, Stephanie R
Gonzales, Alexandra S
Eder, Elizabeth K
Camperchioli, Dominic W
Berndt, Adama
Clark, Michelle W
Rouhier, Kerry A
Slonczewski, Joan L
description Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques.
doi_str_mv 10.1128/AEM.02736-16
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5203621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868304249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c77947b4dace86e84e2f1ea37ec24ae80a2c701f789b893c9cdd0542fbf86c543</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxYModl1981kCvvTBqfmaTPIirGWr0hXB1ueQydzppswmNckUtn99U1uL9ulyuT8O59yD0FtKjihl6uNq_f2IsI7LhspnaEGJVk3LuXyOFoRo3TAmyAF6lfMlIUQQqV6iA9Z1mitOFmj_GcJNtAUabMOAz-zk3X6628_jBMmGgs9Ksj5kHEe8zm4Lybutt9jFyePThjK8iRnwKhTf-1i8wz8h-1xscICHOflwgTe2j8mWmPZ4fR2nufgYXqMXo50yvHmYS_TrZH1-_LXZ_Pjy7Xi1aRzv2tK4alV0vRisAyVBCWAjBcs7cExYUMQy1xE6dkr3SnOn3TCQVrCxH5V0reBL9Ole92rudzA4CDXPZK6S39m0N9F68_8l-K25iNemZYRLRqvA4YNAir9nyMXsfHYwTTZAnLOhStZXCiZ0Rd8_QS_jnEKNV6m21USLyi7Rh3vKpZhzgvHRDCXmrlNTOzV_OjVUVvzdvwEe4b8l8lt4BJ5I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855909468</pqid></control><display><type>article</type><title>Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Creamer, Kaitlin E ; Ditmars, Frederick S ; Basting, Preston J ; Kunka, Karina S ; Hamdallah, Issam N ; Bush, Sean P ; Scott, Zachary ; He, Amanda ; Penix, Stephanie R ; Gonzales, Alexandra S ; Eder, Elizabeth K ; Camperchioli, Dominic W ; Berndt, Adama ; Clark, Michelle W ; Rouhier, Kerry A ; Slonczewski, Joan L</creator><creatorcontrib>Creamer, Kaitlin E ; Ditmars, Frederick S ; Basting, Preston J ; Kunka, Karina S ; Hamdallah, Issam N ; Bush, Sean P ; Scott, Zachary ; He, Amanda ; Penix, Stephanie R ; Gonzales, Alexandra S ; Eder, Elizabeth K ; Camperchioli, Dominic W ; Berndt, Adama ; Clark, Michelle W ; Rouhier, Kerry A ; Slonczewski, Joan L</creatorcontrib><description>Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02736-16</identifier><identifier>PMID: 27793830</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Acids ; Anti-Bacterial Agents - pharmacology ; Anti-Inflammatory Agents, Non-Steroidal - metabolism ; Benzoates - metabolism ; Biological Evolution ; Cytoplasm ; Dose-Response Relationship, Drug ; Drug resistance ; Drug Resistance, Microbial - genetics ; E coli ; Escherichia coli ; Escherichia coli K12 - drug effects ; Escherichia coli K12 - genetics ; Escherichia coli K12 - metabolism ; Food Preservatives - metabolism ; Gene Expression Regulation, Bacterial ; Genomes ; Physiology ; Polymorphism ; Salicylates - metabolism</subject><ispartof>Applied and environmental microbiology, 2017-01, Vol.83 (2), p.E02736</ispartof><rights>Copyright © 2016 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Jan 2017</rights><rights>Copyright © 2016 American Society for Microbiology. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c77947b4dace86e84e2f1ea37ec24ae80a2c701f789b893c9cdd0542fbf86c543</citedby><cites>FETCH-LOGICAL-c375t-c77947b4dace86e84e2f1ea37ec24ae80a2c701f789b893c9cdd0542fbf86c543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203621/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203621/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27793830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Creamer, Kaitlin E</creatorcontrib><creatorcontrib>Ditmars, Frederick S</creatorcontrib><creatorcontrib>Basting, Preston J</creatorcontrib><creatorcontrib>Kunka, Karina S</creatorcontrib><creatorcontrib>Hamdallah, Issam N</creatorcontrib><creatorcontrib>Bush, Sean P</creatorcontrib><creatorcontrib>Scott, Zachary</creatorcontrib><creatorcontrib>He, Amanda</creatorcontrib><creatorcontrib>Penix, Stephanie R</creatorcontrib><creatorcontrib>Gonzales, Alexandra S</creatorcontrib><creatorcontrib>Eder, Elizabeth K</creatorcontrib><creatorcontrib>Camperchioli, Dominic W</creatorcontrib><creatorcontrib>Berndt, Adama</creatorcontrib><creatorcontrib>Clark, Michelle W</creatorcontrib><creatorcontrib>Rouhier, Kerry A</creatorcontrib><creatorcontrib>Slonczewski, Joan L</creatorcontrib><title>Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques.</description><subject>Acids</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - metabolism</subject><subject>Benzoates - metabolism</subject><subject>Biological Evolution</subject><subject>Cytoplasm</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - drug effects</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli K12 - metabolism</subject><subject>Food Preservatives - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genomes</subject><subject>Physiology</subject><subject>Polymorphism</subject><subject>Salicylates - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1rFDEUxYModl1981kCvvTBqfmaTPIirGWr0hXB1ueQydzppswmNckUtn99U1uL9ulyuT8O59yD0FtKjihl6uNq_f2IsI7LhspnaEGJVk3LuXyOFoRo3TAmyAF6lfMlIUQQqV6iA9Z1mitOFmj_GcJNtAUabMOAz-zk3X6628_jBMmGgs9Ksj5kHEe8zm4Lybutt9jFyePThjK8iRnwKhTf-1i8wz8h-1xscICHOflwgTe2j8mWmPZ4fR2nufgYXqMXo50yvHmYS_TrZH1-_LXZ_Pjy7Xi1aRzv2tK4alV0vRisAyVBCWAjBcs7cExYUMQy1xE6dkr3SnOn3TCQVrCxH5V0reBL9Ole92rudzA4CDXPZK6S39m0N9F68_8l-K25iNemZYRLRqvA4YNAir9nyMXsfHYwTTZAnLOhStZXCiZ0Rd8_QS_jnEKNV6m21USLyi7Rh3vKpZhzgvHRDCXmrlNTOzV_OjVUVvzdvwEe4b8l8lt4BJ5I</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Creamer, Kaitlin E</creator><creator>Ditmars, Frederick S</creator><creator>Basting, Preston J</creator><creator>Kunka, Karina S</creator><creator>Hamdallah, Issam N</creator><creator>Bush, Sean P</creator><creator>Scott, Zachary</creator><creator>He, Amanda</creator><creator>Penix, Stephanie R</creator><creator>Gonzales, Alexandra S</creator><creator>Eder, Elizabeth K</creator><creator>Camperchioli, Dominic W</creator><creator>Berndt, Adama</creator><creator>Clark, Michelle W</creator><creator>Rouhier, Kerry A</creator><creator>Slonczewski, Joan L</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20170115</creationdate><title>Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution</title><author>Creamer, Kaitlin E ; Ditmars, Frederick S ; Basting, Preston J ; Kunka, Karina S ; Hamdallah, Issam N ; Bush, Sean P ; Scott, Zachary ; He, Amanda ; Penix, Stephanie R ; Gonzales, Alexandra S ; Eder, Elizabeth K ; Camperchioli, Dominic W ; Berndt, Adama ; Clark, Michelle W ; Rouhier, Kerry A ; Slonczewski, Joan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c77947b4dace86e84e2f1ea37ec24ae80a2c701f789b893c9cdd0542fbf86c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - metabolism</topic><topic>Benzoates - metabolism</topic><topic>Biological Evolution</topic><topic>Cytoplasm</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - drug effects</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli K12 - metabolism</topic><topic>Food Preservatives - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genomes</topic><topic>Physiology</topic><topic>Polymorphism</topic><topic>Salicylates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creamer, Kaitlin E</creatorcontrib><creatorcontrib>Ditmars, Frederick S</creatorcontrib><creatorcontrib>Basting, Preston J</creatorcontrib><creatorcontrib>Kunka, Karina S</creatorcontrib><creatorcontrib>Hamdallah, Issam N</creatorcontrib><creatorcontrib>Bush, Sean P</creatorcontrib><creatorcontrib>Scott, Zachary</creatorcontrib><creatorcontrib>He, Amanda</creatorcontrib><creatorcontrib>Penix, Stephanie R</creatorcontrib><creatorcontrib>Gonzales, Alexandra S</creatorcontrib><creatorcontrib>Eder, Elizabeth K</creatorcontrib><creatorcontrib>Camperchioli, Dominic W</creatorcontrib><creatorcontrib>Berndt, Adama</creatorcontrib><creatorcontrib>Clark, Michelle W</creatorcontrib><creatorcontrib>Rouhier, Kerry A</creatorcontrib><creatorcontrib>Slonczewski, Joan L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creamer, Kaitlin E</au><au>Ditmars, Frederick S</au><au>Basting, Preston J</au><au>Kunka, Karina S</au><au>Hamdallah, Issam N</au><au>Bush, Sean P</au><au>Scott, Zachary</au><au>He, Amanda</au><au>Penix, Stephanie R</au><au>Gonzales, Alexandra S</au><au>Eder, Elizabeth K</au><au>Camperchioli, Dominic W</au><au>Berndt, Adama</au><au>Clark, Michelle W</au><au>Rouhier, Kerry A</au><au>Slonczewski, Joan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2017-01-15</date><risdate>2017</risdate><volume>83</volume><issue>2</issue><spage>E02736</spage><pages>E02736-</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>27793830</pmid><doi>10.1128/AEM.02736-16</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2017-01, Vol.83 (2), p.E02736
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5203621
source MEDLINE; American Society for Microbiology Journals; PubMed Central; Alma/SFX Local Collection
subjects Acids
Anti-Bacterial Agents - pharmacology
Anti-Inflammatory Agents, Non-Steroidal - metabolism
Benzoates - metabolism
Biological Evolution
Cytoplasm
Dose-Response Relationship, Drug
Drug resistance
Drug Resistance, Microbial - genetics
E coli
Escherichia coli
Escherichia coli K12 - drug effects
Escherichia coli K12 - genetics
Escherichia coli K12 - metabolism
Food Preservatives - metabolism
Gene Expression Regulation, Bacterial
Genomes
Physiology
Polymorphism
Salicylates - metabolism
title Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T09%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benzoate-%20and%20Salicylate-Tolerant%20Strains%20of%20Escherichia%20coli%20K-12%20Lose%20Antibiotic%20Resistance%20during%20Laboratory%20Evolution&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Creamer,%20Kaitlin%20E&rft.date=2017-01-15&rft.volume=83&rft.issue=2&rft.spage=E02736&rft.pages=E02736-&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02736-16&rft_dat=%3Cproquest_pubme%3E1868304249%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855909468&rft_id=info:pmid/27793830&rfr_iscdi=true