Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis
Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (51), p.14692-14697 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14697 |
---|---|
container_issue | 51 |
container_start_page | 14692 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Douris, Vassilis Steinbach, Denise Panteleri, Rafaela Livadaras, Ioannis Pickett, John Anthony Van Leeuwen, Thomas Nauen, Ralf Vontas, John |
description | Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro. |
doi_str_mv | 10.1073/pnas.1618258113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5187681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472942</jstor_id><sourcerecordid>26472942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-8f530ca0ce0e3a384ea19ed40301db3aa06f2bfa78ccb49e02cc101fcd87bb9c3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7rh69qQEvHjp3cpHd6cvgizrBywIoueQTlc7GbqTMUmPjMf95WaccVe9JJB66qkULyHPGVwwaMXl1pt0wRqmeK0YEw_IikHHqkZ28JCsAHhbKcnlGXmS0gYAulrBY3LG206AEM2K3H7G5FI23iKdl2yyC57a4BPGHQ60x_wD0VNXHmxO1PiBzi5joouPZodTonmNBfM_w35aIpoT6qwbijGUI4zU2N_eg3rtsvO0dyHtfWktw5-SR6OZEj473efk67vrL1cfqptP7z9evb2pbC15rtRYC7AGLAIKI5REwzocJAhgQy-MgWbk_WhaZW0vOwRuLQM22kG1fd9ZcU7eHL3bpZ9xsOhzNJPeRjebuNfBOP1vxbu1_hZ2umaqbRQrgtcnQQzfF0xZzy5ZnCbjMSxJM9UoIUB2oqCv_kM3YYm-rFeoWggmG3GgLo-UjSGliOPdZxjoQ776kK--z7d0vPx7hzv-T6AFeHEENimHeF9vZMs7ycUv-EmwMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853314633</pqid></control><display><type>article</type><title>Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Douris, Vassilis ; Steinbach, Denise ; Panteleri, Rafaela ; Livadaras, Ioannis ; Pickett, John Anthony ; Van Leeuwen, Thomas ; Nauen, Ralf ; Vontas, John</creator><creatorcontrib>Douris, Vassilis ; Steinbach, Denise ; Panteleri, Rafaela ; Livadaras, Ioannis ; Pickett, John Anthony ; Van Leeuwen, Thomas ; Nauen, Ralf ; Vontas, John</creatorcontrib><description>Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1618258113</identifier><identifier>PMID: 27930336</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agriculture ; Animals ; Araneae ; Biological Assay ; Biological Sciences ; Biosynthesis ; Chitin - chemistry ; CRISPR-Cas Systems ; Drosophila melanogaster ; Exons ; Gene Editing ; Genome, Insect ; Genotype ; Homozygote ; Insecta - genetics ; Insecticide Resistance - genetics ; Insecticides ; Insects ; Larva ; Mites - genetics ; Molecules ; Mutation ; Nucleotides ; Oxazoles - chemistry ; Phylogeny ; Plutella xylostella ; Public health ; Sequence Analysis, DNA ; Sulfonylurea Receptors ; Thiadiazines - chemistry ; Urea - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (51), p.14692-14697</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-8f530ca0ce0e3a384ea19ed40301db3aa06f2bfa78ccb49e02cc101fcd87bb9c3</citedby><cites>FETCH-LOGICAL-c542t-8f530ca0ce0e3a384ea19ed40301db3aa06f2bfa78ccb49e02cc101fcd87bb9c3</cites><orcidid>0000-0003-4608-7482 ; 0000-0002-8386-3770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472942$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472942$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27930336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Douris, Vassilis</creatorcontrib><creatorcontrib>Steinbach, Denise</creatorcontrib><creatorcontrib>Panteleri, Rafaela</creatorcontrib><creatorcontrib>Livadaras, Ioannis</creatorcontrib><creatorcontrib>Pickett, John Anthony</creatorcontrib><creatorcontrib>Van Leeuwen, Thomas</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Vontas, John</creatorcontrib><title>Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.</description><subject>Agriculture</subject><subject>Animals</subject><subject>Araneae</subject><subject>Biological Assay</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chitin - chemistry</subject><subject>CRISPR-Cas Systems</subject><subject>Drosophila melanogaster</subject><subject>Exons</subject><subject>Gene Editing</subject><subject>Genome, Insect</subject><subject>Genotype</subject><subject>Homozygote</subject><subject>Insecta - genetics</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Larva</subject><subject>Mites - genetics</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Oxazoles - chemistry</subject><subject>Phylogeny</subject><subject>Plutella xylostella</subject><subject>Public health</subject><subject>Sequence Analysis, DNA</subject><subject>Sulfonylurea Receptors</subject><subject>Thiadiazines - chemistry</subject><subject>Urea - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoMo7rh69qQEvHjp3cpHd6cvgizrBywIoueQTlc7GbqTMUmPjMf95WaccVe9JJB66qkULyHPGVwwaMXl1pt0wRqmeK0YEw_IikHHqkZ28JCsAHhbKcnlGXmS0gYAulrBY3LG206AEM2K3H7G5FI23iKdl2yyC57a4BPGHQ60x_wD0VNXHmxO1PiBzi5joouPZodTonmNBfM_w35aIpoT6qwbijGUI4zU2N_eg3rtsvO0dyHtfWktw5-SR6OZEj473efk67vrL1cfqptP7z9evb2pbC15rtRYC7AGLAIKI5REwzocJAhgQy-MgWbk_WhaZW0vOwRuLQM22kG1fd9ZcU7eHL3bpZ9xsOhzNJPeRjebuNfBOP1vxbu1_hZ2umaqbRQrgtcnQQzfF0xZzy5ZnCbjMSxJM9UoIUB2oqCv_kM3YYm-rFeoWggmG3GgLo-UjSGliOPdZxjoQ776kK--z7d0vPx7hzv-T6AFeHEENimHeF9vZMs7ycUv-EmwMg</recordid><startdate>20161220</startdate><enddate>20161220</enddate><creator>Douris, Vassilis</creator><creator>Steinbach, Denise</creator><creator>Panteleri, Rafaela</creator><creator>Livadaras, Ioannis</creator><creator>Pickett, John Anthony</creator><creator>Van Leeuwen, Thomas</creator><creator>Nauen, Ralf</creator><creator>Vontas, John</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4608-7482</orcidid><orcidid>https://orcid.org/0000-0002-8386-3770</orcidid></search><sort><creationdate>20161220</creationdate><title>Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis</title><author>Douris, Vassilis ; Steinbach, Denise ; Panteleri, Rafaela ; Livadaras, Ioannis ; Pickett, John Anthony ; Van Leeuwen, Thomas ; Nauen, Ralf ; Vontas, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-8f530ca0ce0e3a384ea19ed40301db3aa06f2bfa78ccb49e02cc101fcd87bb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Animals</topic><topic>Araneae</topic><topic>Biological Assay</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chitin - chemistry</topic><topic>CRISPR-Cas Systems</topic><topic>Drosophila melanogaster</topic><topic>Exons</topic><topic>Gene Editing</topic><topic>Genome, Insect</topic><topic>Genotype</topic><topic>Homozygote</topic><topic>Insecta - genetics</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Larva</topic><topic>Mites - genetics</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Oxazoles - chemistry</topic><topic>Phylogeny</topic><topic>Plutella xylostella</topic><topic>Public health</topic><topic>Sequence Analysis, DNA</topic><topic>Sulfonylurea Receptors</topic><topic>Thiadiazines - chemistry</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douris, Vassilis</creatorcontrib><creatorcontrib>Steinbach, Denise</creatorcontrib><creatorcontrib>Panteleri, Rafaela</creatorcontrib><creatorcontrib>Livadaras, Ioannis</creatorcontrib><creatorcontrib>Pickett, John Anthony</creatorcontrib><creatorcontrib>Van Leeuwen, Thomas</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Vontas, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douris, Vassilis</au><au>Steinbach, Denise</au><au>Panteleri, Rafaela</au><au>Livadaras, Ioannis</au><au>Pickett, John Anthony</au><au>Van Leeuwen, Thomas</au><au>Nauen, Ralf</au><au>Vontas, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-20</date><risdate>2016</risdate><volume>113</volume><issue>51</issue><spage>14692</spage><epage>14697</epage><pages>14692-14697</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Despite the major role of chitin biosynthesis inhibitors such as benzoylureas (BPUs) in the control of pests in agricultural and public health for almost four decades, their molecular mode of action (MoA) has in most cases remained elusive. BPUs interfere with chitin biosynthesis and were thought to interact with sulfonylurea receptors that mediate chitin vesicle transport. Here, we uncover a mutation (I1042M) in the chitin synthase 1 (CHS1) gene of BPU-resistant Plutella xylostella at the same position as the I1017F mutation reported in spider mites that confers etoxazole resistance. Using a genome-editing CRISPR/Cas9 approach coupled with homology-directed repair (HDR) in Drosophila melanogaster, we introduced both substitutions (I1056M/F) in the corresponding fly CHS1 gene (kkv). Homozygous lines bearing either of these mutations were highly resistant to etoxazole and all tested BPUs, as well as buprofezin—an important hemipteran chitin biosynthesis inhibitor. This provides compelling evidence that BPUs, etoxazole, and buprofezin share in fact the same molecular MoA and directly interact with CHS. This finding has immediate effects on resistance management strategies of major agricultural pests but also on mosquito vectors of serious human diseases such as Dengue and Zika, as diflubenzuron, the standard BPU, is one of the few effective larvicides in use. The study elaborates on how genome editing can directly, rapidly, and convincingly elucidate the MoA of bioactive molecules, especially when target sites are complex and hard to reconstitute in vitro.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27930336</pmid><doi>10.1073/pnas.1618258113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4608-7482</orcidid><orcidid>https://orcid.org/0000-0002-8386-3770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (51), p.14692-14697 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5187681 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agriculture Animals Araneae Biological Assay Biological Sciences Biosynthesis Chitin - chemistry CRISPR-Cas Systems Drosophila melanogaster Exons Gene Editing Genome, Insect Genotype Homozygote Insecta - genetics Insecticide Resistance - genetics Insecticides Insects Larva Mites - genetics Molecules Mutation Nucleotides Oxazoles - chemistry Phylogeny Plutella xylostella Public health Sequence Analysis, DNA Sulfonylurea Receptors Thiadiazines - chemistry Urea - chemistry |
title | Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20mutation%20conserved%20between%20insects%20and%20mites%20unravels%20the%20benzoylurea%20insecticide%20mode%20of%20action%20on%20chitin%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Douris,%20Vassilis&rft.date=2016-12-20&rft.volume=113&rft.issue=51&rft.spage=14692&rft.epage=14697&rft.pages=14692-14697&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1618258113&rft_dat=%3Cjstor_pubme%3E26472942%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1853314633&rft_id=info:pmid/27930336&rft_jstor_id=26472942&rfr_iscdi=true |