AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway
The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of...
Gespeichert in:
Veröffentlicht in: | International journal of oncology 2017-01, Vol.50 (1), p.23-30 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | International journal of oncology |
container_volume | 50 |
creator | Morishita, Masayuki Kawamoto, Teruya Hara, Hitomi Onishi, Yasuo Ueha, Takeshi Minoda, Masaya Katayama, Etsuko Takemori, Toshiyuki Fukase, Naomasa Kurosaka, Masahiro Kuroda, Ryosuke Akisue, Toshihiro |
description | The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma. |
doi_str_mv | 10.3892/ijo.2016.3775 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5182012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479715138</galeid><sourcerecordid>A479715138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</originalsourceid><addsrcrecordid>eNptkt1rFDEUxYMotlYffZUBwT5lzcdkkrwIS7EqtiiizyGbZHayzCRjklH635tl69KFkoeE3N89ObkcAF5jtKJCkvd-F1cE4W5FOWdPwDnmEkPSEvq0nhGWsGupPAMvct4hRBhD-Dk4I1xwQag8B2b95Wr9o_HBLsblZvIlmiEGm7weGz3HucTsc603wzLp0MRcXMw6mTjpxrhxzE0ZUly2Q1Or69vvX6F1swvWhdLMugx_9d1L8KzXY3av7vcL8Ov648-rz_Dm26f6-g00HacFtkRKiym3rSXESe4cazeCdqZjgrmNlb0gxPSUIGk7prVEXLai7Tem6yVjgl6ADwfdedlMzppqIelRzclPOt2pqL06rQQ_qG38oxgWdYSkCry9F0jx9-JyUbu4pFA9KywpaiUV1emR2urRKR_6WMXM5LNR65ZLjhmmezOrR6i6rJu8icH1vt6fNLx70DA4PZYhx3EpPoZ8CsIDaFLMObn--EOM1D4TqmZC7TOh9pmo_JuHYznS_0NQgcsDkGcdrLcxH5mqBBmCCMMaHkr_AQPBvks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930493867</pqid></control><display><type>article</type><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</creator><creatorcontrib>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</creatorcontrib><description>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</description><identifier>ISSN: 1019-6439</identifier><identifier>EISSN: 1791-2423</identifier><identifier>DOI: 10.3892/ijo.2016.3775</identifier><identifier>PMID: 27878239</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>5-aminoimidazole-4-carboxiamide ribonucleotide ; Aminoimidazole Carboxamide - administration & dosage ; Aminoimidazole Carboxamide - analogs & derivatives ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - biosynthesis ; AMP-Activated Protein Kinases - genetics ; Animals ; Apoptosis ; Apoptosis - drug effects ; Biosynthesis ; Bone cancer ; Breast cancer ; Cancer therapies ; Care and treatment ; Cell Cycle - drug effects ; Cell growth ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cellular signal transduction ; Clinical trials ; Development and progression ; Diabetes ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Energy Metabolism - genetics ; Experiments ; Gene Expression Regulation, Neoplastic - drug effects ; Genetic aspects ; Health aspects ; Humans ; Kinases ; Laboratories ; Liver cancer ; Medical research ; Mice ; mitochondria ; Mitochondria - drug effects ; Mitochondrial DNA ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; mitochondrial transcription factor A ; Osteosarcoma ; Osteosarcoma - drug therapy ; Osteosarcoma - genetics ; Osteosarcoma - pathology ; Pathogens ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; peroxisome proliferator-activated receptor-γ coactivator-1α ; Phosphorylation ; Proteins ; Ribonucleotides ; Ribonucleotides - administration & dosage ; Sarcoma ; Signal Transduction - drug effects ; Studies ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of oncology, 2017-01, Vol.50 (1), p.23-30</ispartof><rights>Copyright: © Morishita et al.</rights><rights>COPYRIGHT 2017 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2017</rights><rights>Copyright: © Morishita et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</citedby><cites>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,5556,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27878239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morishita, Masayuki</creatorcontrib><creatorcontrib>Kawamoto, Teruya</creatorcontrib><creatorcontrib>Hara, Hitomi</creatorcontrib><creatorcontrib>Onishi, Yasuo</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Minoda, Masaya</creatorcontrib><creatorcontrib>Katayama, Etsuko</creatorcontrib><creatorcontrib>Takemori, Toshiyuki</creatorcontrib><creatorcontrib>Fukase, Naomasa</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Akisue, Toshihiro</creatorcontrib><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><title>International journal of oncology</title><addtitle>Int J Oncol</addtitle><description>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</description><subject>5-aminoimidazole-4-carboxiamide ribonucleotide</subject><subject>Aminoimidazole Carboxamide - administration & dosage</subject><subject>Aminoimidazole Carboxamide - analogs & derivatives</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - biosynthesis</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biosynthesis</subject><subject>Bone cancer</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell Cycle - drug effects</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cellular signal transduction</subject><subject>Clinical trials</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Experiments</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Liver cancer</subject><subject>Medical research</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>mitochondrial transcription factor A</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - drug therapy</subject><subject>Osteosarcoma - genetics</subject><subject>Osteosarcoma - pathology</subject><subject>Pathogens</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>peroxisome proliferator-activated receptor-γ coactivator-1α</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Ribonucleotides</subject><subject>Ribonucleotides - administration & dosage</subject><subject>Sarcoma</subject><subject>Signal Transduction - drug effects</subject><subject>Studies</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1019-6439</issn><issn>1791-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkt1rFDEUxYMotlYffZUBwT5lzcdkkrwIS7EqtiiizyGbZHayzCRjklH635tl69KFkoeE3N89ObkcAF5jtKJCkvd-F1cE4W5FOWdPwDnmEkPSEvq0nhGWsGupPAMvct4hRBhD-Dk4I1xwQag8B2b95Wr9o_HBLsblZvIlmiEGm7weGz3HucTsc603wzLp0MRcXMw6mTjpxrhxzE0ZUly2Q1Or69vvX6F1swvWhdLMugx_9d1L8KzXY3av7vcL8Ov648-rz_Dm26f6-g00HacFtkRKiym3rSXESe4cazeCdqZjgrmNlb0gxPSUIGk7prVEXLai7Tem6yVjgl6ADwfdedlMzppqIelRzclPOt2pqL06rQQ_qG38oxgWdYSkCry9F0jx9-JyUbu4pFA9KywpaiUV1emR2urRKR_6WMXM5LNR65ZLjhmmezOrR6i6rJu8icH1vt6fNLx70DA4PZYhx3EpPoZ8CsIDaFLMObn--EOM1D4TqmZC7TOh9pmo_JuHYznS_0NQgcsDkGcdrLcxH5mqBBmCCMMaHkr_AQPBvks</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Morishita, Masayuki</creator><creator>Kawamoto, Teruya</creator><creator>Hara, Hitomi</creator><creator>Onishi, Yasuo</creator><creator>Ueha, Takeshi</creator><creator>Minoda, Masaya</creator><creator>Katayama, Etsuko</creator><creator>Takemori, Toshiyuki</creator><creator>Fukase, Naomasa</creator><creator>Kurosaka, Masahiro</creator><creator>Kuroda, Ryosuke</creator><creator>Akisue, Toshihiro</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><author>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>5-aminoimidazole-4-carboxiamide ribonucleotide</topic><topic>Aminoimidazole Carboxamide - administration & dosage</topic><topic>Aminoimidazole Carboxamide - analogs & derivatives</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - biosynthesis</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biosynthesis</topic><topic>Bone cancer</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell Cycle - drug effects</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cellular signal transduction</topic><topic>Clinical trials</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Experiments</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Liver cancer</topic><topic>Medical research</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>mitochondrial transcription factor A</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - drug therapy</topic><topic>Osteosarcoma - genetics</topic><topic>Osteosarcoma - pathology</topic><topic>Pathogens</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>peroxisome proliferator-activated receptor-γ coactivator-1α</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Ribonucleotides</topic><topic>Ribonucleotides - administration & dosage</topic><topic>Sarcoma</topic><topic>Signal Transduction - drug effects</topic><topic>Studies</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morishita, Masayuki</creatorcontrib><creatorcontrib>Kawamoto, Teruya</creatorcontrib><creatorcontrib>Hara, Hitomi</creatorcontrib><creatorcontrib>Onishi, Yasuo</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Minoda, Masaya</creatorcontrib><creatorcontrib>Katayama, Etsuko</creatorcontrib><creatorcontrib>Takemori, Toshiyuki</creatorcontrib><creatorcontrib>Fukase, Naomasa</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Akisue, Toshihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morishita, Masayuki</au><au>Kawamoto, Teruya</au><au>Hara, Hitomi</au><au>Onishi, Yasuo</au><au>Ueha, Takeshi</au><au>Minoda, Masaya</au><au>Katayama, Etsuko</au><au>Takemori, Toshiyuki</au><au>Fukase, Naomasa</au><au>Kurosaka, Masahiro</au><au>Kuroda, Ryosuke</au><au>Akisue, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</atitle><jtitle>International journal of oncology</jtitle><addtitle>Int J Oncol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>50</volume><issue>1</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>1019-6439</issn><eissn>1791-2423</eissn><abstract>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>27878239</pmid><doi>10.3892/ijo.2016.3775</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-6439 |
ispartof | International journal of oncology, 2017-01, Vol.50 (1), p.23-30 |
issn | 1019-6439 1791-2423 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5182012 |
source | Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 5-aminoimidazole-4-carboxiamide ribonucleotide Aminoimidazole Carboxamide - administration & dosage Aminoimidazole Carboxamide - analogs & derivatives AMP-activated protein kinase AMP-Activated Protein Kinases - biosynthesis AMP-Activated Protein Kinases - genetics Animals Apoptosis Apoptosis - drug effects Biosynthesis Bone cancer Breast cancer Cancer therapies Care and treatment Cell Cycle - drug effects Cell growth Cell Line, Tumor Cell Proliferation - drug effects Cellular signal transduction Clinical trials Development and progression Diabetes DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - genetics Energy Metabolism - genetics Experiments Gene Expression Regulation, Neoplastic - drug effects Genetic aspects Health aspects Humans Kinases Laboratories Liver cancer Medical research Mice mitochondria Mitochondria - drug effects Mitochondrial DNA Mitochondrial Proteins - biosynthesis Mitochondrial Proteins - genetics mitochondrial transcription factor A Osteosarcoma Osteosarcoma - drug therapy Osteosarcoma - genetics Osteosarcoma - pathology Pathogens Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics peroxisome proliferator-activated receptor-γ coactivator-1α Phosphorylation Proteins Ribonucleotides Ribonucleotides - administration & dosage Sarcoma Signal Transduction - drug effects Studies Transcription Factors - biosynthesis Transcription Factors - genetics Tumors Xenograft Model Antitumor Assays |
title | AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AICAR%20induces%20mitochondrial%20apoptosis%20in%20human%20osteosarcoma%20cells%20through%20an%20AMPK-dependent%20pathway&rft.jtitle=International%20journal%20of%20oncology&rft.au=Morishita,%20Masayuki&rft.date=2017-01-01&rft.volume=50&rft.issue=1&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=1019-6439&rft.eissn=1791-2423&rft_id=info:doi/10.3892/ijo.2016.3775&rft_dat=%3Cgale_pubme%3EA479715138%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930493867&rft_id=info:pmid/27878239&rft_galeid=A479715138&rfr_iscdi=true |