AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway

The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of oncology 2017-01, Vol.50 (1), p.23-30
Hauptverfasser: Morishita, Masayuki, Kawamoto, Teruya, Hara, Hitomi, Onishi, Yasuo, Ueha, Takeshi, Minoda, Masaya, Katayama, Etsuko, Takemori, Toshiyuki, Fukase, Naomasa, Kurosaka, Masahiro, Kuroda, Ryosuke, Akisue, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 23
container_title International journal of oncology
container_volume 50
creator Morishita, Masayuki
Kawamoto, Teruya
Hara, Hitomi
Onishi, Yasuo
Ueha, Takeshi
Minoda, Masaya
Katayama, Etsuko
Takemori, Toshiyuki
Fukase, Naomasa
Kurosaka, Masahiro
Kuroda, Ryosuke
Akisue, Toshihiro
description The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.
doi_str_mv 10.3892/ijo.2016.3775
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5182012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479715138</galeid><sourcerecordid>A479715138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</originalsourceid><addsrcrecordid>eNptkt1rFDEUxYMotlYffZUBwT5lzcdkkrwIS7EqtiiizyGbZHayzCRjklH635tl69KFkoeE3N89ObkcAF5jtKJCkvd-F1cE4W5FOWdPwDnmEkPSEvq0nhGWsGupPAMvct4hRBhD-Dk4I1xwQag8B2b95Wr9o_HBLsblZvIlmiEGm7weGz3HucTsc603wzLp0MRcXMw6mTjpxrhxzE0ZUly2Q1Or69vvX6F1swvWhdLMugx_9d1L8KzXY3av7vcL8Ov648-rz_Dm26f6-g00HacFtkRKiym3rSXESe4cazeCdqZjgrmNlb0gxPSUIGk7prVEXLai7Tem6yVjgl6ADwfdedlMzppqIelRzclPOt2pqL06rQQ_qG38oxgWdYSkCry9F0jx9-JyUbu4pFA9KywpaiUV1emR2urRKR_6WMXM5LNR65ZLjhmmezOrR6i6rJu8icH1vt6fNLx70DA4PZYhx3EpPoZ8CsIDaFLMObn--EOM1D4TqmZC7TOh9pmo_JuHYznS_0NQgcsDkGcdrLcxH5mqBBmCCMMaHkr_AQPBvks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930493867</pqid></control><display><type>article</type><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</creator><creatorcontrib>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</creatorcontrib><description>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</description><identifier>ISSN: 1019-6439</identifier><identifier>EISSN: 1791-2423</identifier><identifier>DOI: 10.3892/ijo.2016.3775</identifier><identifier>PMID: 27878239</identifier><language>eng</language><publisher>Greece: D.A. Spandidos</publisher><subject>5-aminoimidazole-4-carboxiamide ribonucleotide ; Aminoimidazole Carboxamide - administration &amp; dosage ; Aminoimidazole Carboxamide - analogs &amp; derivatives ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - biosynthesis ; AMP-Activated Protein Kinases - genetics ; Animals ; Apoptosis ; Apoptosis - drug effects ; Biosynthesis ; Bone cancer ; Breast cancer ; Cancer therapies ; Care and treatment ; Cell Cycle - drug effects ; Cell growth ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cellular signal transduction ; Clinical trials ; Development and progression ; Diabetes ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Energy Metabolism - genetics ; Experiments ; Gene Expression Regulation, Neoplastic - drug effects ; Genetic aspects ; Health aspects ; Humans ; Kinases ; Laboratories ; Liver cancer ; Medical research ; Mice ; mitochondria ; Mitochondria - drug effects ; Mitochondrial DNA ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; mitochondrial transcription factor A ; Osteosarcoma ; Osteosarcoma - drug therapy ; Osteosarcoma - genetics ; Osteosarcoma - pathology ; Pathogens ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; peroxisome proliferator-activated receptor-γ coactivator-1α ; Phosphorylation ; Proteins ; Ribonucleotides ; Ribonucleotides - administration &amp; dosage ; Sarcoma ; Signal Transduction - drug effects ; Studies ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>International journal of oncology, 2017-01, Vol.50 (1), p.23-30</ispartof><rights>Copyright: © Morishita et al.</rights><rights>COPYRIGHT 2017 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2017</rights><rights>Copyright: © Morishita et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</citedby><cites>FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,5556,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27878239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morishita, Masayuki</creatorcontrib><creatorcontrib>Kawamoto, Teruya</creatorcontrib><creatorcontrib>Hara, Hitomi</creatorcontrib><creatorcontrib>Onishi, Yasuo</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Minoda, Masaya</creatorcontrib><creatorcontrib>Katayama, Etsuko</creatorcontrib><creatorcontrib>Takemori, Toshiyuki</creatorcontrib><creatorcontrib>Fukase, Naomasa</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Akisue, Toshihiro</creatorcontrib><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><title>International journal of oncology</title><addtitle>Int J Oncol</addtitle><description>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</description><subject>5-aminoimidazole-4-carboxiamide ribonucleotide</subject><subject>Aminoimidazole Carboxamide - administration &amp; dosage</subject><subject>Aminoimidazole Carboxamide - analogs &amp; derivatives</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - biosynthesis</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biosynthesis</subject><subject>Bone cancer</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell Cycle - drug effects</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cellular signal transduction</subject><subject>Clinical trials</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Experiments</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Liver cancer</subject><subject>Medical research</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>mitochondrial transcription factor A</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - drug therapy</subject><subject>Osteosarcoma - genetics</subject><subject>Osteosarcoma - pathology</subject><subject>Pathogens</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>peroxisome proliferator-activated receptor-γ coactivator-1α</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Ribonucleotides</subject><subject>Ribonucleotides - administration &amp; dosage</subject><subject>Sarcoma</subject><subject>Signal Transduction - drug effects</subject><subject>Studies</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1019-6439</issn><issn>1791-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkt1rFDEUxYMotlYffZUBwT5lzcdkkrwIS7EqtiiizyGbZHayzCRjklH635tl69KFkoeE3N89ObkcAF5jtKJCkvd-F1cE4W5FOWdPwDnmEkPSEvq0nhGWsGupPAMvct4hRBhD-Dk4I1xwQag8B2b95Wr9o_HBLsblZvIlmiEGm7weGz3HucTsc603wzLp0MRcXMw6mTjpxrhxzE0ZUly2Q1Or69vvX6F1swvWhdLMugx_9d1L8KzXY3av7vcL8Ov648-rz_Dm26f6-g00HacFtkRKiym3rSXESe4cazeCdqZjgrmNlb0gxPSUIGk7prVEXLai7Tem6yVjgl6ADwfdedlMzppqIelRzclPOt2pqL06rQQ_qG38oxgWdYSkCry9F0jx9-JyUbu4pFA9KywpaiUV1emR2urRKR_6WMXM5LNR65ZLjhmmezOrR6i6rJu8icH1vt6fNLx70DA4PZYhx3EpPoZ8CsIDaFLMObn--EOM1D4TqmZC7TOh9pmo_JuHYznS_0NQgcsDkGcdrLcxH5mqBBmCCMMaHkr_AQPBvks</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Morishita, Masayuki</creator><creator>Kawamoto, Teruya</creator><creator>Hara, Hitomi</creator><creator>Onishi, Yasuo</creator><creator>Ueha, Takeshi</creator><creator>Minoda, Masaya</creator><creator>Katayama, Etsuko</creator><creator>Takemori, Toshiyuki</creator><creator>Fukase, Naomasa</creator><creator>Kurosaka, Masahiro</creator><creator>Kuroda, Ryosuke</creator><creator>Akisue, Toshihiro</creator><general>D.A. Spandidos</general><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</title><author>Morishita, Masayuki ; Kawamoto, Teruya ; Hara, Hitomi ; Onishi, Yasuo ; Ueha, Takeshi ; Minoda, Masaya ; Katayama, Etsuko ; Takemori, Toshiyuki ; Fukase, Naomasa ; Kurosaka, Masahiro ; Kuroda, Ryosuke ; Akisue, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-4299d137d4d22e97ee54b836c6585ebd9f822cf3209d65aa9079484fbc6f95583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>5-aminoimidazole-4-carboxiamide ribonucleotide</topic><topic>Aminoimidazole Carboxamide - administration &amp; dosage</topic><topic>Aminoimidazole Carboxamide - analogs &amp; derivatives</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - biosynthesis</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biosynthesis</topic><topic>Bone cancer</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell Cycle - drug effects</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cellular signal transduction</topic><topic>Clinical trials</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Experiments</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Liver cancer</topic><topic>Medical research</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>mitochondrial transcription factor A</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - drug therapy</topic><topic>Osteosarcoma - genetics</topic><topic>Osteosarcoma - pathology</topic><topic>Pathogens</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>peroxisome proliferator-activated receptor-γ coactivator-1α</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Ribonucleotides</topic><topic>Ribonucleotides - administration &amp; dosage</topic><topic>Sarcoma</topic><topic>Signal Transduction - drug effects</topic><topic>Studies</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morishita, Masayuki</creatorcontrib><creatorcontrib>Kawamoto, Teruya</creatorcontrib><creatorcontrib>Hara, Hitomi</creatorcontrib><creatorcontrib>Onishi, Yasuo</creatorcontrib><creatorcontrib>Ueha, Takeshi</creatorcontrib><creatorcontrib>Minoda, Masaya</creatorcontrib><creatorcontrib>Katayama, Etsuko</creatorcontrib><creatorcontrib>Takemori, Toshiyuki</creatorcontrib><creatorcontrib>Fukase, Naomasa</creatorcontrib><creatorcontrib>Kurosaka, Masahiro</creatorcontrib><creatorcontrib>Kuroda, Ryosuke</creatorcontrib><creatorcontrib>Akisue, Toshihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morishita, Masayuki</au><au>Kawamoto, Teruya</au><au>Hara, Hitomi</au><au>Onishi, Yasuo</au><au>Ueha, Takeshi</au><au>Minoda, Masaya</au><au>Katayama, Etsuko</au><au>Takemori, Toshiyuki</au><au>Fukase, Naomasa</au><au>Kurosaka, Masahiro</au><au>Kuroda, Ryosuke</au><au>Akisue, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway</atitle><jtitle>International journal of oncology</jtitle><addtitle>Int J Oncol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>50</volume><issue>1</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>1019-6439</issn><eissn>1791-2423</eissn><abstract>The AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) modulates cellular energy metabolism, and promotes mitochondrial proliferation and apoptosis. Previous studies have shown that AICAR has anticancer effects in various cancers, however the roles of AMPK and/or the effects of AICAR on osteosarcoma have not been reported. In the present study, we evaluated the effects of AICAR on tumor growth and mitochondrial apoptosis in human osteosarcoma both in vitro and in vivo. For in vitro experiments, two human osteosarcoma cell lines, MG63 and KHOS, were treated with AICAR, and the effects of AICAR on cell growth and mitochondrial apoptosis were assessed by WST assays, TUNEL staining, and immunoblot analyses. In vivo, human osteosarcoma-bearing mice were treated with AICAR, and the mitochondrial proliferation and apoptotic activity in treated tumors were assessed. In vitro experiments revealed that AICAR activated AMPK, inhibited cell growth, and induced mitochondrial apoptosis in both osteosarcoma cell lines. In vivo, AICAR significantly reduced osteosarcoma growth without apparent body weight loss and AICAR increased both mitochondrial proliferation and apoptotic activity in treated tumor tissues. AICAR showed anticancer effects in osteosarcoma cells through an AMPK-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/mitochondrial transcription factor A (TFAM)/mitochondrial pathway. The findings in this study strongly suggest that AICAR could be considered as a potent therapeutic agent for the treatment of human osteosarcoma.</abstract><cop>Greece</cop><pub>D.A. Spandidos</pub><pmid>27878239</pmid><doi>10.3892/ijo.2016.3775</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-6439
ispartof International journal of oncology, 2017-01, Vol.50 (1), p.23-30
issn 1019-6439
1791-2423
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5182012
source Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 5-aminoimidazole-4-carboxiamide ribonucleotide
Aminoimidazole Carboxamide - administration & dosage
Aminoimidazole Carboxamide - analogs & derivatives
AMP-activated protein kinase
AMP-Activated Protein Kinases - biosynthesis
AMP-Activated Protein Kinases - genetics
Animals
Apoptosis
Apoptosis - drug effects
Biosynthesis
Bone cancer
Breast cancer
Cancer therapies
Care and treatment
Cell Cycle - drug effects
Cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
Cellular signal transduction
Clinical trials
Development and progression
Diabetes
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
Energy Metabolism - genetics
Experiments
Gene Expression Regulation, Neoplastic - drug effects
Genetic aspects
Health aspects
Humans
Kinases
Laboratories
Liver cancer
Medical research
Mice
mitochondria
Mitochondria - drug effects
Mitochondrial DNA
Mitochondrial Proteins - biosynthesis
Mitochondrial Proteins - genetics
mitochondrial transcription factor A
Osteosarcoma
Osteosarcoma - drug therapy
Osteosarcoma - genetics
Osteosarcoma - pathology
Pathogens
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - biosynthesis
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics
peroxisome proliferator-activated receptor-γ coactivator-1α
Phosphorylation
Proteins
Ribonucleotides
Ribonucleotides - administration & dosage
Sarcoma
Signal Transduction - drug effects
Studies
Transcription Factors - biosynthesis
Transcription Factors - genetics
Tumors
Xenograft Model Antitumor Assays
title AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AICAR%20induces%20mitochondrial%20apoptosis%20in%20human%20osteosarcoma%20cells%20through%20an%20AMPK-dependent%20pathway&rft.jtitle=International%20journal%20of%20oncology&rft.au=Morishita,%20Masayuki&rft.date=2017-01-01&rft.volume=50&rft.issue=1&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=1019-6439&rft.eissn=1791-2423&rft_id=info:doi/10.3892/ijo.2016.3775&rft_dat=%3Cgale_pubme%3EA479715138%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930493867&rft_id=info:pmid/27878239&rft_galeid=A479715138&rfr_iscdi=true