A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-12, Vol.6 (1), p.39909-39909, Article 39909
Hauptverfasser: Fang, Yunnan, Hester, Jimmy G. D., Su, Wenjing, Chow, Justin H., Sitaraman, Suresh K., Tentzeris, Manos M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39909
container_issue 1
container_start_page 39909
container_title Scientific reports
container_volume 6
creator Fang, Yunnan
Hester, Jimmy G. D.
Su, Wenjing
Chow, Justin H.
Sitaraman, Suresh K.
Tentzeris, Manos M.
description A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
doi_str_mv 10.1038/srep39909
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5180237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852782836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</originalsourceid><addsrcrecordid>eNplkd1qFTEUhYNYbGl74QtIwBsrjOZnfpIboRS1xYI3eh0ymZ2eHDPJmMyUnhfxeU172sPR5iabvT_W2slC6DUlHyjh4mNOMHEpiXyBjhipm4pxxl7u1YfoNOc1KadhsqbyFTpkghAhRXeE_pzj3sUKgu49DHjUd27U3m_w6PyAvd5AqvpN9VDgb3qaY8B5SVYbwGMcnHVGz6409TSlqM0K25jwvAJsdZ-ehtHiIlq58GsNczUlF-ZiZj3cuWKLwYOZUwzO4AFunYF8gg6s9hlOH-9j9PPL5x8Xl9X1969XF-fXlam5mKvW1MaQupW0oURKLRot6pa1vRWN7SwznSTcdMwCt9ANdUONqSVQIZgdmOz5Mfq01Z2WfoTBQJiT9qpsOOq0UVE79e8kuJW6ibeqoYIw3hWBd48CKf5eIM9qdNmA9zpAXLKiomGdYIK3BX37H7qOSwrleYWSkkvOCC3U2ZYyKeaSrd0tQ4m6D1ztAi_sm_3td-RTvAV4vwXy_Z_fQNqzfKb2Fx69uB8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899393201</pqid></control><display><type>article</type><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</creator><creatorcontrib>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</creatorcontrib><description>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep39909</identifier><identifier>PMID: 28008987</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1009 ; 639/301/930/543 ; 639/638/298/917 ; Coffee ; Electronic equipment ; Fabrication ; Graphene ; Heparin ; Humanities and Social Sciences ; Hydrophobicity ; Methods ; multidisciplinary ; Nanoparticles ; Outdoor air quality ; Physiology ; Printing ; Protamine sulfate ; Science ; Sensors ; Solvents ; Thin films</subject><ispartof>Scientific reports, 2016-12, Vol.6 (1), p.39909-39909, Article 39909</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Dec 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</citedby><cites>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28008987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Yunnan</creatorcontrib><creatorcontrib>Hester, Jimmy G. D.</creatorcontrib><creatorcontrib>Su, Wenjing</creatorcontrib><creatorcontrib>Chow, Justin H.</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><creatorcontrib>Tentzeris, Manos M.</creatorcontrib><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</description><subject>639/301/1005/1009</subject><subject>639/301/930/543</subject><subject>639/638/298/917</subject><subject>Coffee</subject><subject>Electronic equipment</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>Heparin</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobicity</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Outdoor air quality</subject><subject>Physiology</subject><subject>Printing</subject><subject>Protamine sulfate</subject><subject>Science</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd1qFTEUhYNYbGl74QtIwBsrjOZnfpIboRS1xYI3eh0ymZ2eHDPJmMyUnhfxeU172sPR5iabvT_W2slC6DUlHyjh4mNOMHEpiXyBjhipm4pxxl7u1YfoNOc1KadhsqbyFTpkghAhRXeE_pzj3sUKgu49DHjUd27U3m_w6PyAvd5AqvpN9VDgb3qaY8B5SVYbwGMcnHVGz6409TSlqM0K25jwvAJsdZ-ehtHiIlq58GsNczUlF-ZiZj3cuWKLwYOZUwzO4AFunYF8gg6s9hlOH-9j9PPL5x8Xl9X1969XF-fXlam5mKvW1MaQupW0oURKLRot6pa1vRWN7SwznSTcdMwCt9ANdUONqSVQIZgdmOz5Mfq01Z2WfoTBQJiT9qpsOOq0UVE79e8kuJW6ibeqoYIw3hWBd48CKf5eIM9qdNmA9zpAXLKiomGdYIK3BX37H7qOSwrleYWSkkvOCC3U2ZYyKeaSrd0tQ4m6D1ztAi_sm_3td-RTvAV4vwXy_Z_fQNqzfKb2Fx69uB8</recordid><startdate>20161223</startdate><enddate>20161223</enddate><creator>Fang, Yunnan</creator><creator>Hester, Jimmy G. D.</creator><creator>Su, Wenjing</creator><creator>Chow, Justin H.</creator><creator>Sitaraman, Suresh K.</creator><creator>Tentzeris, Manos M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161223</creationdate><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><author>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1005/1009</topic><topic>639/301/930/543</topic><topic>639/638/298/917</topic><topic>Coffee</topic><topic>Electronic equipment</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>Heparin</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobicity</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Outdoor air quality</topic><topic>Physiology</topic><topic>Printing</topic><topic>Protamine sulfate</topic><topic>Science</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yunnan</creatorcontrib><creatorcontrib>Hester, Jimmy G. D.</creatorcontrib><creatorcontrib>Su, Wenjing</creatorcontrib><creatorcontrib>Chow, Justin H.</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><creatorcontrib>Tentzeris, Manos M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yunnan</au><au>Hester, Jimmy G. D.</au><au>Su, Wenjing</au><au>Chow, Justin H.</au><au>Sitaraman, Suresh K.</au><au>Tentzeris, Manos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-12-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>39909</spage><epage>39909</epage><pages>39909-39909</pages><artnum>39909</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28008987</pmid><doi>10.1038/srep39909</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-12, Vol.6 (1), p.39909-39909, Article 39909
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5180237
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/1005/1009
639/301/930/543
639/638/298/917
Coffee
Electronic equipment
Fabrication
Graphene
Heparin
Humanities and Social Sciences
Hydrophobicity
Methods
multidisciplinary
Nanoparticles
Outdoor air quality
Physiology
Printing
Protamine sulfate
Science
Sensors
Solvents
Thin films
title A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bio-enabled%20maximally%20mild%20layer-by-layer%20Kapton%20surface%20modification%20approach%20for%20the%20fabrication%20of%20all-inkjet-printed%20flexible%20electronic%20devices&rft.jtitle=Scientific%20reports&rft.au=Fang,%20Yunnan&rft.date=2016-12-23&rft.volume=6&rft.issue=1&rft.spage=39909&rft.epage=39909&rft.pages=39909-39909&rft.artnum=39909&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep39909&rft_dat=%3Cproquest_pubme%3E1852782836%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899393201&rft_id=info:pmid/28008987&rfr_iscdi=true