A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible el...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-12, Vol.6 (1), p.39909-39909, Article 39909 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39909 |
---|---|
container_issue | 1 |
container_start_page | 39909 |
container_title | Scientific reports |
container_volume | 6 |
creator | Fang, Yunnan Hester, Jimmy G. D. Su, Wenjing Chow, Justin H. Sitaraman, Suresh K. Tentzeris, Manos M. |
description | A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. |
doi_str_mv | 10.1038/srep39909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5180237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852782836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</originalsourceid><addsrcrecordid>eNplkd1qFTEUhYNYbGl74QtIwBsrjOZnfpIboRS1xYI3eh0ymZ2eHDPJmMyUnhfxeU172sPR5iabvT_W2slC6DUlHyjh4mNOMHEpiXyBjhipm4pxxl7u1YfoNOc1KadhsqbyFTpkghAhRXeE_pzj3sUKgu49DHjUd27U3m_w6PyAvd5AqvpN9VDgb3qaY8B5SVYbwGMcnHVGz6409TSlqM0K25jwvAJsdZ-ehtHiIlq58GsNczUlF-ZiZj3cuWKLwYOZUwzO4AFunYF8gg6s9hlOH-9j9PPL5x8Xl9X1969XF-fXlam5mKvW1MaQupW0oURKLRot6pa1vRWN7SwznSTcdMwCt9ANdUONqSVQIZgdmOz5Mfq01Z2WfoTBQJiT9qpsOOq0UVE79e8kuJW6ibeqoYIw3hWBd48CKf5eIM9qdNmA9zpAXLKiomGdYIK3BX37H7qOSwrleYWSkkvOCC3U2ZYyKeaSrd0tQ4m6D1ztAi_sm_3td-RTvAV4vwXy_Z_fQNqzfKb2Fx69uB8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899393201</pqid></control><display><type>article</type><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</creator><creatorcontrib>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</creatorcontrib><description>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep39909</identifier><identifier>PMID: 28008987</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1009 ; 639/301/930/543 ; 639/638/298/917 ; Coffee ; Electronic equipment ; Fabrication ; Graphene ; Heparin ; Humanities and Social Sciences ; Hydrophobicity ; Methods ; multidisciplinary ; Nanoparticles ; Outdoor air quality ; Physiology ; Printing ; Protamine sulfate ; Science ; Sensors ; Solvents ; Thin films</subject><ispartof>Scientific reports, 2016-12, Vol.6 (1), p.39909-39909, Article 39909</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Dec 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</citedby><cites>FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5180237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28008987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Yunnan</creatorcontrib><creatorcontrib>Hester, Jimmy G. D.</creatorcontrib><creatorcontrib>Su, Wenjing</creatorcontrib><creatorcontrib>Chow, Justin H.</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><creatorcontrib>Tentzeris, Manos M.</creatorcontrib><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</description><subject>639/301/1005/1009</subject><subject>639/301/930/543</subject><subject>639/638/298/917</subject><subject>Coffee</subject><subject>Electronic equipment</subject><subject>Fabrication</subject><subject>Graphene</subject><subject>Heparin</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobicity</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Outdoor air quality</subject><subject>Physiology</subject><subject>Printing</subject><subject>Protamine sulfate</subject><subject>Science</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkd1qFTEUhYNYbGl74QtIwBsrjOZnfpIboRS1xYI3eh0ymZ2eHDPJmMyUnhfxeU172sPR5iabvT_W2slC6DUlHyjh4mNOMHEpiXyBjhipm4pxxl7u1YfoNOc1KadhsqbyFTpkghAhRXeE_pzj3sUKgu49DHjUd27U3m_w6PyAvd5AqvpN9VDgb3qaY8B5SVYbwGMcnHVGz6409TSlqM0K25jwvAJsdZ-ehtHiIlq58GsNczUlF-ZiZj3cuWKLwYOZUwzO4AFunYF8gg6s9hlOH-9j9PPL5x8Xl9X1969XF-fXlam5mKvW1MaQupW0oURKLRot6pa1vRWN7SwznSTcdMwCt9ANdUONqSVQIZgdmOz5Mfq01Z2WfoTBQJiT9qpsOOq0UVE79e8kuJW6ibeqoYIw3hWBd48CKf5eIM9qdNmA9zpAXLKiomGdYIK3BX37H7qOSwrleYWSkkvOCC3U2ZYyKeaSrd0tQ4m6D1ztAi_sm_3td-RTvAV4vwXy_Z_fQNqzfKb2Fx69uB8</recordid><startdate>20161223</startdate><enddate>20161223</enddate><creator>Fang, Yunnan</creator><creator>Hester, Jimmy G. D.</creator><creator>Su, Wenjing</creator><creator>Chow, Justin H.</creator><creator>Sitaraman, Suresh K.</creator><creator>Tentzeris, Manos M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161223</creationdate><title>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</title><author>Fang, Yunnan ; Hester, Jimmy G. D. ; Su, Wenjing ; Chow, Justin H. ; Sitaraman, Suresh K. ; Tentzeris, Manos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-6c4cc0469151099a85a84626bf85f7f2c7903c72fe3fe7d451cc49e1882fd29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/1005/1009</topic><topic>639/301/930/543</topic><topic>639/638/298/917</topic><topic>Coffee</topic><topic>Electronic equipment</topic><topic>Fabrication</topic><topic>Graphene</topic><topic>Heparin</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobicity</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Outdoor air quality</topic><topic>Physiology</topic><topic>Printing</topic><topic>Protamine sulfate</topic><topic>Science</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yunnan</creatorcontrib><creatorcontrib>Hester, Jimmy G. D.</creatorcontrib><creatorcontrib>Su, Wenjing</creatorcontrib><creatorcontrib>Chow, Justin H.</creatorcontrib><creatorcontrib>Sitaraman, Suresh K.</creatorcontrib><creatorcontrib>Tentzeris, Manos M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yunnan</au><au>Hester, Jimmy G. D.</au><au>Su, Wenjing</au><au>Chow, Justin H.</au><au>Sitaraman, Suresh K.</au><au>Tentzeris, Manos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-12-23</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>39909</spage><epage>39909</epage><pages>39909-39909</pages><artnum>39909</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28008987</pmid><doi>10.1038/srep39909</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-12, Vol.6 (1), p.39909-39909, Article 39909 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5180237 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/301/1005/1009 639/301/930/543 639/638/298/917 Coffee Electronic equipment Fabrication Graphene Heparin Humanities and Social Sciences Hydrophobicity Methods multidisciplinary Nanoparticles Outdoor air quality Physiology Printing Protamine sulfate Science Sensors Solvents Thin films |
title | A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bio-enabled%20maximally%20mild%20layer-by-layer%20Kapton%20surface%20modification%20approach%20for%20the%20fabrication%20of%20all-inkjet-printed%20flexible%20electronic%20devices&rft.jtitle=Scientific%20reports&rft.au=Fang,%20Yunnan&rft.date=2016-12-23&rft.volume=6&rft.issue=1&rft.spage=39909&rft.epage=39909&rft.pages=39909-39909&rft.artnum=39909&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep39909&rft_dat=%3Cproquest_pubme%3E1852782836%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899393201&rft_id=info:pmid/28008987&rfr_iscdi=true |