Detection of timescales in evolving complex systems
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-12, Vol.6 (1), p.39713-39713, Article 39713 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39713 |
---|---|
container_issue | 1 |
container_start_page | 39713 |
container_title | Scientific reports |
container_volume | 6 |
creator | Darst, Richard K. Granell, Clara Arenas, Alex Gómez, Sergio Saramäki, Jari Fortunato, Santo |
description | Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. |
doi_str_mv | 10.1038/srep39713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5177884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851698232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fce657f430072b3a1f9954cc9605d62ddd2fb04d8acbbf48c2f3742e8d6fb5a43</originalsourceid><addsrcrecordid>eNplkU1Lw0AQhhdRbKk9-Ack4EWF6n4muxdB6icUvOh52Wxma0qSrdm02H_vltZSdS4zMA_vzLyD0CnB1wQzeRNamDOVEXaA-hRzMaKM0sO9uoeGIcxwDEEVJ-oY9ajEmEuK-4jdQwe2K32TeJd0ZQ3BmgpCUjYJLH21LJtpYn09r-ArCavQQR1O0JEzVYDhNg_Q--PD2_h5NHl9ehnfTUaWM9mNnIVUZI4zjDOaM0OcUoJbq1IsipQWRUFdjnkhjc1zx6WljmWcgixSlwvD2QDdbnTni7yGwkLTtabS87asTbvS3pT6d6cpP_TUL7UgWSblWuBiK9D6zwWETtdlsFBVpgG_CJpIQVIlo0kRPf-DzvyibeJ5kVKKK8q5iNTlhrKtD9F4t1uGYL3-ht59I7Jn-9vvyB_vI3C1AUJsNVNo90b-U_sGwGOUFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899492445</pqid></control><display><type>article</type><title>Detection of timescales in evolving complex systems</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Darst, Richard K. ; Granell, Clara ; Arenas, Alex ; Gómez, Sergio ; Saramäki, Jari ; Fortunato, Santo</creator><creatorcontrib>Darst, Richard K. ; Granell, Clara ; Arenas, Alex ; Gómez, Sergio ; Saramäki, Jari ; Fortunato, Santo</creatorcontrib><description>Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep39713</identifier><identifier>PMID: 28004820</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2804 ; Complex systems ; Evolution ; Humanities and Social Sciences ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-12, Vol.6 (1), p.39713-39713, Article 39713</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Dec 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fce657f430072b3a1f9954cc9605d62ddd2fb04d8acbbf48c2f3742e8d6fb5a43</citedby><cites>FETCH-LOGICAL-c438t-fce657f430072b3a1f9954cc9605d62ddd2fb04d8acbbf48c2f3742e8d6fb5a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177884/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5177884/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28004820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darst, Richard K.</creatorcontrib><creatorcontrib>Granell, Clara</creatorcontrib><creatorcontrib>Arenas, Alex</creatorcontrib><creatorcontrib>Gómez, Sergio</creatorcontrib><creatorcontrib>Saramäki, Jari</creatorcontrib><creatorcontrib>Fortunato, Santo</creatorcontrib><title>Detection of timescales in evolving complex systems</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.</description><subject>639/766/530/2801</subject><subject>639/766/530/2804</subject><subject>Complex systems</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1Lw0AQhhdRbKk9-Ack4EWF6n4muxdB6icUvOh52Wxma0qSrdm02H_vltZSdS4zMA_vzLyD0CnB1wQzeRNamDOVEXaA-hRzMaKM0sO9uoeGIcxwDEEVJ-oY9ajEmEuK-4jdQwe2K32TeJd0ZQ3BmgpCUjYJLH21LJtpYn09r-ArCavQQR1O0JEzVYDhNg_Q--PD2_h5NHl9ehnfTUaWM9mNnIVUZI4zjDOaM0OcUoJbq1IsipQWRUFdjnkhjc1zx6WljmWcgixSlwvD2QDdbnTni7yGwkLTtabS87asTbvS3pT6d6cpP_TUL7UgWSblWuBiK9D6zwWETtdlsFBVpgG_CJpIQVIlo0kRPf-DzvyibeJ5kVKKK8q5iNTlhrKtD9F4t1uGYL3-ht59I7Jn-9vvyB_vI3C1AUJsNVNo90b-U_sGwGOUFg</recordid><startdate>20161222</startdate><enddate>20161222</enddate><creator>Darst, Richard K.</creator><creator>Granell, Clara</creator><creator>Arenas, Alex</creator><creator>Gómez, Sergio</creator><creator>Saramäki, Jari</creator><creator>Fortunato, Santo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161222</creationdate><title>Detection of timescales in evolving complex systems</title><author>Darst, Richard K. ; Granell, Clara ; Arenas, Alex ; Gómez, Sergio ; Saramäki, Jari ; Fortunato, Santo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fce657f430072b3a1f9954cc9605d62ddd2fb04d8acbbf48c2f3742e8d6fb5a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2804</topic><topic>Complex systems</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darst, Richard K.</creatorcontrib><creatorcontrib>Granell, Clara</creatorcontrib><creatorcontrib>Arenas, Alex</creatorcontrib><creatorcontrib>Gómez, Sergio</creatorcontrib><creatorcontrib>Saramäki, Jari</creatorcontrib><creatorcontrib>Fortunato, Santo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darst, Richard K.</au><au>Granell, Clara</au><au>Arenas, Alex</au><au>Gómez, Sergio</au><au>Saramäki, Jari</au><au>Fortunato, Santo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of timescales in evolving complex systems</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-12-22</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>39713</spage><epage>39713</epage><pages>39713-39713</pages><artnum>39713</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28004820</pmid><doi>10.1038/srep39713</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-12, Vol.6 (1), p.39713-39713, Article 39713 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5177884 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/766/530/2801 639/766/530/2804 Complex systems Evolution Humanities and Social Sciences multidisciplinary Science |
title | Detection of timescales in evolving complex systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20timescales%20in%20evolving%20complex%20systems&rft.jtitle=Scientific%20reports&rft.au=Darst,%20Richard%20K.&rft.date=2016-12-22&rft.volume=6&rft.issue=1&rft.spage=39713&rft.epage=39713&rft.pages=39713-39713&rft.artnum=39713&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep39713&rft_dat=%3Cproquest_pubme%3E1851698232%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899492445&rft_id=info:pmid/28004820&rfr_iscdi=true |