RNA modification enzyme TruB is a tRNA chaperone
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (50), p.14306-14311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14311 |
---|---|
container_issue | 50 |
container_start_page | 14306 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Keffer-Wilkes, Laura Carole Veerareddygari, Govardhan Reddy Kothe, Ute |
description | Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB’s RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870–1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones. |
doi_str_mv | 10.1073/pnas.1607512113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472834</jstor_id><sourcerecordid>26472834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-90a0f3541295cd4fdb67c003c820a566519578cae8d0aaa689ae09395a8ee5ec3</originalsourceid><addsrcrecordid>eNqN0UtLJDEUBeAgI9o-1q5mKHDjpvTmnWwGVHyBKIiuwzWV0mq6Kj1JlaC_3mra56xcZXG_XJJzCNmhsE9B84N5h3mfKtCSMkr5CplQsLRUwsIvMgFgujSCiXWykfMUAKw0sEbWmTbCKqATAjdXh0Ubq6ZuPPZN7IrQvTy3obhNw1HR5AKLfkH8I85Dil3YIqs1znLYfjs3yd3pye3xeXl5fXZxfHhZeilYX1pAqLkUlFnpK1FX90p7AO4NA5RKSWqlNh6DqQARlbEYwHIr0YQgg-eb5O9y73y4b0PlQ9cnnLl5alpMzy5i475PuubRPcQnJ6nSVIpxwd7bghT_DSH3rm2yD7MZdiEO2VGjOANrufwBFWO4ICWMdPc_Oo1D6sYkRiXH8DWnC3WwVD7FnFOoP95NwS2Kc4vi3Gdx440_X7_74d-bGsHvJZjmPqbPuRKaGS74K_8Ym4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851097310</pqid></control><display><type>article</type><title>RNA modification enzyme TruB is a tRNA chaperone</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Keffer-Wilkes, Laura Carole ; Veerareddygari, Govardhan Reddy ; Kothe, Ute</creator><creatorcontrib>Keffer-Wilkes, Laura Carole ; Veerareddygari, Govardhan Reddy ; Kothe, Ute</creatorcontrib><description>Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB’s RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870–1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1607512113</identifier><identifier>PMID: 27849601</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Biological Sciences ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene expression ; Gene Knockout Techniques ; Genes, Bacterial ; Genotype & phenotype ; Intramolecular Transferases - chemistry ; Intramolecular Transferases - genetics ; Intramolecular Transferases - metabolism ; Models, Molecular ; Molecular Chaperones - chemistry ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; Protein Domains ; Ribonucleic acid ; RNA ; RNA Folding ; RNA, Bacterial - chemistry ; RNA, Bacterial - metabolism ; RNA, Transfer - chemistry ; RNA, Transfer - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.14306-14311</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-90a0f3541295cd4fdb67c003c820a566519578cae8d0aaa689ae09395a8ee5ec3</citedby><cites>FETCH-LOGICAL-c542t-90a0f3541295cd4fdb67c003c820a566519578cae8d0aaa689ae09395a8ee5ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472834$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472834$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27849601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keffer-Wilkes, Laura Carole</creatorcontrib><creatorcontrib>Veerareddygari, Govardhan Reddy</creatorcontrib><creatorcontrib>Kothe, Ute</creatorcontrib><title>RNA modification enzyme TruB is a tRNA chaperone</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB’s RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870–1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.</description><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Knockout Techniques</subject><subject>Genes, Bacterial</subject><subject>Genotype & phenotype</subject><subject>Intramolecular Transferases - chemistry</subject><subject>Intramolecular Transferases - genetics</subject><subject>Intramolecular Transferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Domains</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Folding</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UtLJDEUBeAgI9o-1q5mKHDjpvTmnWwGVHyBKIiuwzWV0mq6Kj1JlaC_3mra56xcZXG_XJJzCNmhsE9B84N5h3mfKtCSMkr5CplQsLRUwsIvMgFgujSCiXWykfMUAKw0sEbWmTbCKqATAjdXh0Ubq6ZuPPZN7IrQvTy3obhNw1HR5AKLfkH8I85Dil3YIqs1znLYfjs3yd3pye3xeXl5fXZxfHhZeilYX1pAqLkUlFnpK1FX90p7AO4NA5RKSWqlNh6DqQARlbEYwHIr0YQgg-eb5O9y73y4b0PlQ9cnnLl5alpMzy5i475PuubRPcQnJ6nSVIpxwd7bghT_DSH3rm2yD7MZdiEO2VGjOANrufwBFWO4ICWMdPc_Oo1D6sYkRiXH8DWnC3WwVD7FnFOoP95NwS2Kc4vi3Gdx440_X7_74d-bGsHvJZjmPqbPuRKaGS74K_8Ym4s</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Keffer-Wilkes, Laura Carole</creator><creator>Veerareddygari, Govardhan Reddy</creator><creator>Kothe, Ute</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161213</creationdate><title>RNA modification enzyme TruB is a tRNA chaperone</title><author>Keffer-Wilkes, Laura Carole ; Veerareddygari, Govardhan Reddy ; Kothe, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-90a0f3541295cd4fdb67c003c820a566519578cae8d0aaa689ae09395a8ee5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Knockout Techniques</topic><topic>Genes, Bacterial</topic><topic>Genotype & phenotype</topic><topic>Intramolecular Transferases - chemistry</topic><topic>Intramolecular Transferases - genetics</topic><topic>Intramolecular Transferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Domains</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Folding</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keffer-Wilkes, Laura Carole</creatorcontrib><creatorcontrib>Veerareddygari, Govardhan Reddy</creatorcontrib><creatorcontrib>Kothe, Ute</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keffer-Wilkes, Laura Carole</au><au>Veerareddygari, Govardhan Reddy</au><au>Kothe, Ute</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA modification enzyme TruB is a tRNA chaperone</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>113</volume><issue>50</issue><spage>14306</spage><epage>14311</epage><pages>14306-14311</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB’s RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870–1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27849601</pmid><doi>10.1073/pnas.1607512113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.14306-14311 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167154 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biochemistry Biological Sciences E coli Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene expression Gene Knockout Techniques Genes, Bacterial Genotype & phenotype Intramolecular Transferases - chemistry Intramolecular Transferases - genetics Intramolecular Transferases - metabolism Models, Molecular Molecular Chaperones - chemistry Molecular Chaperones - genetics Molecular Chaperones - metabolism Mutagenesis, Site-Directed Nucleic Acid Conformation Protein Domains Ribonucleic acid RNA RNA Folding RNA, Bacterial - chemistry RNA, Bacterial - metabolism RNA, Transfer - chemistry RNA, Transfer - metabolism |
title | RNA modification enzyme TruB is a tRNA chaperone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20modification%20enzyme%20TruB%20is%20a%20tRNA%20chaperone&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Keffer-Wilkes,%20Laura%20Carole&rft.date=2016-12-13&rft.volume=113&rft.issue=50&rft.spage=14306&rft.epage=14311&rft.pages=14306-14311&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1607512113&rft_dat=%3Cjstor_pubme%3E26472834%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851097310&rft_id=info:pmid/27849601&rft_jstor_id=26472834&rfr_iscdi=true |