Enhanced limonene production in cyanobacteria reveals photosynthesis limitations

Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (50), p.14225-14230
Hauptverfasser: Wang, Xin, Liu, Wei, Xin, Changpeng, Zheng, Yi, Cheng, Yanbing, Sun, Su, Li, Runze, Zhu, Xin-Guang, Dai, Susie Y., Rentzepis, Peter M., Yuan, Joshua S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14230
container_issue 50
container_start_page 14225
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Wang, Xin
Liu, Wei
Xin, Changpeng
Zheng, Yi
Cheng, Yanbing
Sun, Su
Li, Runze
Zhu, Xin-Guang
Dai, Susie Y.
Rentzepis, Peter M.
Yuan, Joshua S.
description Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.
doi_str_mv 10.1073/pnas.1613340113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472820</jstor_id><sourcerecordid>26472820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-7119b6e78d8b5202e850d77fc18b33b355cc04924b138ae1be059842e1e4ff8c3</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEotvCmRMogguXbWf8kTiXSqhqAakSHOBsOc6EeJW1g-1U2v-eRFta4MRpDvN7bz5eUbxCOEeo-cXkTTrHCjkXgMifFBuEBreVaOBpsQFg9VYJJk6K05R2ANBIBc-LE1Y3iArqTfH12g_GW-rK0e2DJ0_lFEM32-yCL50v7cH40BqbKTpTRrojM6ZyGkIO6eDzQMmlVeuyWSXpRfGsXwh6eV_Piu8319-uPm1vv3z8fPXhdmtl1eRtjdi0FdWqU61kwEhJ6Oq6t6hazlsupbUgGiZa5MoQtgSyWU4hJNH3yvKz4vLoO83tnjpLPkcz6im6vYkHHYzTf3e8G_SPcKclVjUKWAzeHg1Cyk4n6zLZwQbvyWaNopK8qRbo_f2UGH7OlLLeu2RpHI2nMCeNquIMl0XxP1AhFWcMVtd3_6C7MEe_vGuhJILiHFbDiyNlY0gpUv9wHIJe09dr-vox_UXx5s-fPPC_416A10dgl3KIj_1K1Ewx4L8AS7O1TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851083301</pqid></control><display><type>article</type><title>Enhanced limonene production in cyanobacteria reveals photosynthesis limitations</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Xin ; Liu, Wei ; Xin, Changpeng ; Zheng, Yi ; Cheng, Yanbing ; Sun, Su ; Li, Runze ; Zhu, Xin-Guang ; Dai, Susie Y. ; Rentzepis, Peter M. ; Yuan, Joshua S.</creator><creatorcontrib>Wang, Xin ; Liu, Wei ; Xin, Changpeng ; Zheng, Yi ; Cheng, Yanbing ; Sun, Su ; Li, Runze ; Zhu, Xin-Guang ; Dai, Susie Y. ; Rentzepis, Peter M. ; Yuan, Joshua S. ; Texas Agrilife Research, College Station, TX (United States)</creatorcontrib><description>Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1613340113</identifier><identifier>PMID: 27911807</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphate - metabolism ; advanced biofuel ; BASIC BIOLOGICAL SCIENCES ; Biofuels ; Biosynthesis ; Cyanobacteria ; Cyclohexenes - metabolism ; Erythritol - analogs &amp; derivatives ; Erythritol - metabolism ; Hydrocarbons ; Industrial Microbiology ; Kinetics ; limonene ; MEP ; Metabolic Engineering ; Metabolic Networks and Pathways ; Metabolites ; Models, Biological ; NADP - metabolism ; Photosynthesis ; Physical Sciences ; Proteomics ; Sugar Phosphates - metabolism ; Synechococcus - metabolism ; Synechococcus elongatus ; terpene ; Terpenes - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.14225-14230</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-7119b6e78d8b5202e850d77fc18b33b355cc04924b138ae1be059842e1e4ff8c3</citedby><cites>FETCH-LOGICAL-c569t-7119b6e78d8b5202e850d77fc18b33b355cc04924b138ae1be059842e1e4ff8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27911807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465396$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xin, Changpeng</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Cheng, Yanbing</creatorcontrib><creatorcontrib>Sun, Su</creatorcontrib><creatorcontrib>Li, Runze</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Rentzepis, Peter M.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Texas Agrilife Research, College Station, TX (United States)</creatorcontrib><title>Enhanced limonene production in cyanobacteria reveals photosynthesis limitations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>advanced biofuel</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biofuels</subject><subject>Biosynthesis</subject><subject>Cyanobacteria</subject><subject>Cyclohexenes - metabolism</subject><subject>Erythritol - analogs &amp; derivatives</subject><subject>Erythritol - metabolism</subject><subject>Hydrocarbons</subject><subject>Industrial Microbiology</subject><subject>Kinetics</subject><subject>limonene</subject><subject>MEP</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>NADP - metabolism</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Proteomics</subject><subject>Sugar Phosphates - metabolism</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus elongatus</subject><subject>terpene</subject><subject>Terpenes - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1v1DAQxSMEotvCmRMogguXbWf8kTiXSqhqAakSHOBsOc6EeJW1g-1U2v-eRFta4MRpDvN7bz5eUbxCOEeo-cXkTTrHCjkXgMifFBuEBreVaOBpsQFg9VYJJk6K05R2ANBIBc-LE1Y3iArqTfH12g_GW-rK0e2DJ0_lFEM32-yCL50v7cH40BqbKTpTRrojM6ZyGkIO6eDzQMmlVeuyWSXpRfGsXwh6eV_Piu8319-uPm1vv3z8fPXhdmtl1eRtjdi0FdWqU61kwEhJ6Oq6t6hazlsupbUgGiZa5MoQtgSyWU4hJNH3yvKz4vLoO83tnjpLPkcz6im6vYkHHYzTf3e8G_SPcKclVjUKWAzeHg1Cyk4n6zLZwQbvyWaNopK8qRbo_f2UGH7OlLLeu2RpHI2nMCeNquIMl0XxP1AhFWcMVtd3_6C7MEe_vGuhJILiHFbDiyNlY0gpUv9wHIJe09dr-vox_UXx5s-fPPC_416A10dgl3KIj_1K1Ewx4L8AS7O1TQ</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Wang, Xin</creator><creator>Liu, Wei</creator><creator>Xin, Changpeng</creator><creator>Zheng, Yi</creator><creator>Cheng, Yanbing</creator><creator>Sun, Su</creator><creator>Li, Runze</creator><creator>Zhu, Xin-Guang</creator><creator>Dai, Susie Y.</creator><creator>Rentzepis, Peter M.</creator><creator>Yuan, Joshua S.</creator><general>National Academy of Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161213</creationdate><title>Enhanced limonene production in cyanobacteria reveals photosynthesis limitations</title><author>Wang, Xin ; Liu, Wei ; Xin, Changpeng ; Zheng, Yi ; Cheng, Yanbing ; Sun, Su ; Li, Runze ; Zhu, Xin-Guang ; Dai, Susie Y. ; Rentzepis, Peter M. ; Yuan, Joshua S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-7119b6e78d8b5202e850d77fc18b33b355cc04924b138ae1be059842e1e4ff8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>advanced biofuel</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biofuels</topic><topic>Biosynthesis</topic><topic>Cyanobacteria</topic><topic>Cyclohexenes - metabolism</topic><topic>Erythritol - analogs &amp; derivatives</topic><topic>Erythritol - metabolism</topic><topic>Hydrocarbons</topic><topic>Industrial Microbiology</topic><topic>Kinetics</topic><topic>limonene</topic><topic>MEP</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>NADP - metabolism</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Proteomics</topic><topic>Sugar Phosphates - metabolism</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus elongatus</topic><topic>terpene</topic><topic>Terpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xin, Changpeng</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Cheng, Yanbing</creatorcontrib><creatorcontrib>Sun, Su</creatorcontrib><creatorcontrib>Li, Runze</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Rentzepis, Peter M.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Texas Agrilife Research, College Station, TX (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xin</au><au>Liu, Wei</au><au>Xin, Changpeng</au><au>Zheng, Yi</au><au>Cheng, Yanbing</au><au>Sun, Su</au><au>Li, Runze</au><au>Zhu, Xin-Guang</au><au>Dai, Susie Y.</au><au>Rentzepis, Peter M.</au><au>Yuan, Joshua S.</au><aucorp>Texas Agrilife Research, College Station, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced limonene production in cyanobacteria reveals photosynthesis limitations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>113</volume><issue>50</issue><spage>14225</spage><epage>14230</epage><pages>14225-14230</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27911807</pmid><doi>10.1073/pnas.1613340113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (50), p.14225-14230
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5167140
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - metabolism
advanced biofuel
BASIC BIOLOGICAL SCIENCES
Biofuels
Biosynthesis
Cyanobacteria
Cyclohexenes - metabolism
Erythritol - analogs & derivatives
Erythritol - metabolism
Hydrocarbons
Industrial Microbiology
Kinetics
limonene
MEP
Metabolic Engineering
Metabolic Networks and Pathways
Metabolites
Models, Biological
NADP - metabolism
Photosynthesis
Physical Sciences
Proteomics
Sugar Phosphates - metabolism
Synechococcus - metabolism
Synechococcus elongatus
terpene
Terpenes - metabolism
title Enhanced limonene production in cyanobacteria reveals photosynthesis limitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20limonene%20production%20in%20cyanobacteria%20reveals%20photosynthesis%20limitations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Xin&rft.aucorp=Texas%20Agrilife%20Research,%20College%20Station,%20TX%20(United%20States)&rft.date=2016-12-13&rft.volume=113&rft.issue=50&rft.spage=14225&rft.epage=14230&rft.pages=14225-14230&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1613340113&rft_dat=%3Cjstor_pubme%3E26472820%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851083301&rft_id=info:pmid/27911807&rft_jstor_id=26472820&rfr_iscdi=true