Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural

2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2017-01, Vol.83 (1), p.E02312
Hauptverfasser: Hossain, Gazi Sakir, Yuan, Haibo, Li, Jianghua, Shin, Hyun-Dong, Wang, Miao, Du, Guocheng, Chen, Jian, Liu, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page E02312
container_title Applied and environmental microbiology
container_volume 83
creator Hossain, Gazi Sakir
Yuan, Haibo
Li, Jianghua
Shin, Hyun-Dong
Wang, Miao
Du, Guocheng
Chen, Jian
Liu, Long
description 2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.
doi_str_mv 10.1128/aem.02312-16
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5165124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4283479321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</originalsourceid><addsrcrecordid>eNqNks9rFDEUx4NY7LZ68ywDXjx0al4yySQXYS27ttCiiJ5DJpPspswkNTMjzrV_uRlbi_VUCIS8fN73_UToNeBTACLea9ufYkKBlMCfoRVgKUpGKX-OVhhLWRJS4UN0NAzXGOMKc_ECHZK6loxisUK3V3bUTey8KTZh54O1yYddEV3xVcepG23X6SKm4Me9D7GbR2908XHLceFiKr6k2E5m9DEsHuSEldsp6dBmKDXx17zIro1vC5diX7DyfG5TNvd23M-dm1I-unuJDpzuBvvq_j5G37ebb2fn5eXnTxdn68vSMICxZLwybYM1F66ClteUQA1VXbm6NbzRjnEpHWgJmmBqjWSNaAyQ_JaScgz0GH24072Zmt62xoYxR1c3yfc6zSpqrx7_BL9Xu_hTMeAMSJUF3t0LpPhjssOoej-YpUPBxmlQILiguKKUPQGllZRSMJHRt_-h13FKIXciUwznGiVfYp_cUSbFYUjWPeQNWC17oNabK_VnDxTwjL_5t9YH-O_g6W-6jq7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850714964</pqid></control><display><type>article</type><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</creator><creatorcontrib>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</creatorcontrib><description>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.02312-16</identifier><identifier>PMID: 27795308</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Aldehyde Reductase - genetics ; Aldehyde Reductase - metabolism ; Biocatalysis ; Biomass ; Biotechnology ; Carboxy-Lyases - genetics ; Carboxy-Lyases - metabolism ; Dicarboxylic Acids - metabolism ; Enterobacteriaceae - chemistry ; Enterobacteriaceae - genetics ; Enterobacteriaceae - isolation &amp; purification ; Enterobacteriaceae - metabolism ; Furaldehyde - analogs &amp; derivatives ; Furaldehyde - metabolism ; Furans - metabolism ; Gram-negative bacteria ; Industrial Microbiology - methods ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Metabolic Engineering - methods ; Metabolic Networks and Pathways ; Metabolism ; Organic chemicals ; Oxidation ; Oxidation-Reduction ; Polyesters - chemistry ; Raoultella ornithinolytica ; Retinal Dehydrogenase - genetics ; Retinal Dehydrogenase - metabolism</subject><ispartof>Applied and environmental microbiology, 2017-01, Vol.83 (1), p.E02312</ispartof><rights>Copyright © 2016 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Jan 2017</rights><rights>Copyright © 2016 American Society for Microbiology. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</citedby><cites>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165124/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165124/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27795308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossain, Gazi Sakir</creatorcontrib><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-Dong</creatorcontrib><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</description><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - metabolism</subject><subject>Biocatalysis</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carboxy-Lyases - genetics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Dicarboxylic Acids - metabolism</subject><subject>Enterobacteriaceae - chemistry</subject><subject>Enterobacteriaceae - genetics</subject><subject>Enterobacteriaceae - isolation &amp; purification</subject><subject>Enterobacteriaceae - metabolism</subject><subject>Furaldehyde - analogs &amp; derivatives</subject><subject>Furaldehyde - metabolism</subject><subject>Furans - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Industrial Microbiology - methods</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Organic chemicals</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polyesters - chemistry</subject><subject>Raoultella ornithinolytica</subject><subject>Retinal Dehydrogenase - genetics</subject><subject>Retinal Dehydrogenase - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFDEUx4NY7LZ68ywDXjx0al4yySQXYS27ttCiiJ5DJpPspswkNTMjzrV_uRlbi_VUCIS8fN73_UToNeBTACLea9ufYkKBlMCfoRVgKUpGKX-OVhhLWRJS4UN0NAzXGOMKc_ECHZK6loxisUK3V3bUTey8KTZh54O1yYddEV3xVcepG23X6SKm4Me9D7GbR2908XHLceFiKr6k2E5m9DEsHuSEldsp6dBmKDXx17zIro1vC5diX7DyfG5TNvd23M-dm1I-unuJDpzuBvvq_j5G37ebb2fn5eXnTxdn68vSMICxZLwybYM1F66ClteUQA1VXbm6NbzRjnEpHWgJmmBqjWSNaAyQ_JaScgz0GH24072Zmt62xoYxR1c3yfc6zSpqrx7_BL9Xu_hTMeAMSJUF3t0LpPhjssOoej-YpUPBxmlQILiguKKUPQGllZRSMJHRt_-h13FKIXciUwznGiVfYp_cUSbFYUjWPeQNWC17oNabK_VnDxTwjL_5t9YH-O_g6W-6jq7w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Hossain, Gazi Sakir</creator><creator>Yuan, Haibo</creator><creator>Li, Jianghua</creator><creator>Shin, Hyun-Dong</creator><creator>Wang, Miao</creator><creator>Du, Guocheng</creator><creator>Chen, Jian</creator><creator>Liu, Long</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><author>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - metabolism</topic><topic>Biocatalysis</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carboxy-Lyases - genetics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Dicarboxylic Acids - metabolism</topic><topic>Enterobacteriaceae - chemistry</topic><topic>Enterobacteriaceae - genetics</topic><topic>Enterobacteriaceae - isolation &amp; purification</topic><topic>Enterobacteriaceae - metabolism</topic><topic>Furaldehyde - analogs &amp; derivatives</topic><topic>Furaldehyde - metabolism</topic><topic>Furans - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Industrial Microbiology - methods</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Organic chemicals</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polyesters - chemistry</topic><topic>Raoultella ornithinolytica</topic><topic>Retinal Dehydrogenase - genetics</topic><topic>Retinal Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Gazi Sakir</creatorcontrib><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-Dong</creatorcontrib><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Gazi Sakir</au><au>Yuan, Haibo</au><au>Li, Jianghua</au><au>Shin, Hyun-Dong</au><au>Wang, Miao</au><au>Du, Guocheng</au><au>Chen, Jian</au><au>Liu, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>83</volume><issue>1</issue><spage>E02312</spage><pages>E02312-</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>27795308</pmid><doi>10.1128/aem.02312-16</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2017-01, Vol.83 (1), p.E02312
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5165124
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Aldehyde Reductase - genetics
Aldehyde Reductase - metabolism
Biocatalysis
Biomass
Biotechnology
Carboxy-Lyases - genetics
Carboxy-Lyases - metabolism
Dicarboxylic Acids - metabolism
Enterobacteriaceae - chemistry
Enterobacteriaceae - genetics
Enterobacteriaceae - isolation & purification
Enterobacteriaceae - metabolism
Furaldehyde - analogs & derivatives
Furaldehyde - metabolism
Furans - metabolism
Gram-negative bacteria
Industrial Microbiology - methods
Isoenzymes - genetics
Isoenzymes - metabolism
Metabolic Engineering - methods
Metabolic Networks and Pathways
Metabolism
Organic chemicals
Oxidation
Oxidation-Reduction
Polyesters - chemistry
Raoultella ornithinolytica
Retinal Dehydrogenase - genetics
Retinal Dehydrogenase - metabolism
title Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Raoultella%20ornithinolytica%20BF60%20for%20Production%20of%202,5-Furandicarboxylic%20Acid%20from%205-Hydroxymethylfurfural&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Hossain,%20Gazi%20Sakir&rft.date=2017-01-01&rft.volume=83&rft.issue=1&rft.spage=E02312&rft.pages=E02312-&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.02312-16&rft_dat=%3Cproquest_pubme%3E4283479321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850714964&rft_id=info:pmid/27795308&rfr_iscdi=true