Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural
2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environment...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2017-01, Vol.83 (1), p.E02312 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | E02312 |
container_title | Applied and environmental microbiology |
container_volume | 83 |
creator | Hossain, Gazi Sakir Yuan, Haibo Li, Jianghua Shin, Hyun-Dong Wang, Miao Du, Guocheng Chen, Jian Liu, Long |
description | 2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%.
In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica. |
doi_str_mv | 10.1128/aem.02312-16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5165124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4283479321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</originalsourceid><addsrcrecordid>eNqNks9rFDEUx4NY7LZ68ywDXjx0al4yySQXYS27ttCiiJ5DJpPspswkNTMjzrV_uRlbi_VUCIS8fN73_UToNeBTACLea9ufYkKBlMCfoRVgKUpGKX-OVhhLWRJS4UN0NAzXGOMKc_ECHZK6loxisUK3V3bUTey8KTZh54O1yYddEV3xVcepG23X6SKm4Me9D7GbR2908XHLceFiKr6k2E5m9DEsHuSEldsp6dBmKDXx17zIro1vC5diX7DyfG5TNvd23M-dm1I-unuJDpzuBvvq_j5G37ebb2fn5eXnTxdn68vSMICxZLwybYM1F66ClteUQA1VXbm6NbzRjnEpHWgJmmBqjWSNaAyQ_JaScgz0GH24072Zmt62xoYxR1c3yfc6zSpqrx7_BL9Xu_hTMeAMSJUF3t0LpPhjssOoej-YpUPBxmlQILiguKKUPQGllZRSMJHRt_-h13FKIXciUwznGiVfYp_cUSbFYUjWPeQNWC17oNabK_VnDxTwjL_5t9YH-O_g6W-6jq7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850714964</pqid></control><display><type>article</type><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</creator><creatorcontrib>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</creatorcontrib><description>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%.
In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.02312-16</identifier><identifier>PMID: 27795308</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Aldehyde Reductase - genetics ; Aldehyde Reductase - metabolism ; Biocatalysis ; Biomass ; Biotechnology ; Carboxy-Lyases - genetics ; Carboxy-Lyases - metabolism ; Dicarboxylic Acids - metabolism ; Enterobacteriaceae - chemistry ; Enterobacteriaceae - genetics ; Enterobacteriaceae - isolation & purification ; Enterobacteriaceae - metabolism ; Furaldehyde - analogs & derivatives ; Furaldehyde - metabolism ; Furans - metabolism ; Gram-negative bacteria ; Industrial Microbiology - methods ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Metabolic Engineering - methods ; Metabolic Networks and Pathways ; Metabolism ; Organic chemicals ; Oxidation ; Oxidation-Reduction ; Polyesters - chemistry ; Raoultella ornithinolytica ; Retinal Dehydrogenase - genetics ; Retinal Dehydrogenase - metabolism</subject><ispartof>Applied and environmental microbiology, 2017-01, Vol.83 (1), p.E02312</ispartof><rights>Copyright © 2016 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Jan 2017</rights><rights>Copyright © 2016 American Society for Microbiology. 2016 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</citedby><cites>FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165124/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165124/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27795308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hossain, Gazi Sakir</creatorcontrib><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-Dong</creatorcontrib><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%.
In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</description><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - metabolism</subject><subject>Biocatalysis</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carboxy-Lyases - genetics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Dicarboxylic Acids - metabolism</subject><subject>Enterobacteriaceae - chemistry</subject><subject>Enterobacteriaceae - genetics</subject><subject>Enterobacteriaceae - isolation & purification</subject><subject>Enterobacteriaceae - metabolism</subject><subject>Furaldehyde - analogs & derivatives</subject><subject>Furaldehyde - metabolism</subject><subject>Furans - metabolism</subject><subject>Gram-negative bacteria</subject><subject>Industrial Microbiology - methods</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Organic chemicals</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polyesters - chemistry</subject><subject>Raoultella ornithinolytica</subject><subject>Retinal Dehydrogenase - genetics</subject><subject>Retinal Dehydrogenase - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9rFDEUx4NY7LZ68ywDXjx0al4yySQXYS27ttCiiJ5DJpPspswkNTMjzrV_uRlbi_VUCIS8fN73_UToNeBTACLea9ufYkKBlMCfoRVgKUpGKX-OVhhLWRJS4UN0NAzXGOMKc_ECHZK6loxisUK3V3bUTey8KTZh54O1yYddEV3xVcepG23X6SKm4Me9D7GbR2908XHLceFiKr6k2E5m9DEsHuSEldsp6dBmKDXx17zIro1vC5diX7DyfG5TNvd23M-dm1I-unuJDpzuBvvq_j5G37ebb2fn5eXnTxdn68vSMICxZLwybYM1F66ClteUQA1VXbm6NbzRjnEpHWgJmmBqjWSNaAyQ_JaScgz0GH24072Zmt62xoYxR1c3yfc6zSpqrx7_BL9Xu_hTMeAMSJUF3t0LpPhjssOoej-YpUPBxmlQILiguKKUPQGllZRSMJHRt_-h13FKIXciUwznGiVfYp_cUSbFYUjWPeQNWC17oNabK_VnDxTwjL_5t9YH-O_g6W-6jq7w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Hossain, Gazi Sakir</creator><creator>Yuan, Haibo</creator><creator>Li, Jianghua</creator><creator>Shin, Hyun-Dong</creator><creator>Wang, Miao</creator><creator>Du, Guocheng</creator><creator>Chen, Jian</creator><creator>Liu, Long</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</title><author>Hossain, Gazi Sakir ; Yuan, Haibo ; Li, Jianghua ; Shin, Hyun-Dong ; Wang, Miao ; Du, Guocheng ; Chen, Jian ; Liu, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-564cdb0a68f41d6732171474f7dc6baf5699f1a91a203ec95b8bc1291a9936013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - metabolism</topic><topic>Biocatalysis</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carboxy-Lyases - genetics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Dicarboxylic Acids - metabolism</topic><topic>Enterobacteriaceae - chemistry</topic><topic>Enterobacteriaceae - genetics</topic><topic>Enterobacteriaceae - isolation & purification</topic><topic>Enterobacteriaceae - metabolism</topic><topic>Furaldehyde - analogs & derivatives</topic><topic>Furaldehyde - metabolism</topic><topic>Furans - metabolism</topic><topic>Gram-negative bacteria</topic><topic>Industrial Microbiology - methods</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Organic chemicals</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polyesters - chemistry</topic><topic>Raoultella ornithinolytica</topic><topic>Retinal Dehydrogenase - genetics</topic><topic>Retinal Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Gazi Sakir</creatorcontrib><creatorcontrib>Yuan, Haibo</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-Dong</creatorcontrib><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Gazi Sakir</au><au>Yuan, Haibo</au><au>Li, Jianghua</au><au>Shin, Hyun-Dong</au><au>Wang, Miao</au><au>Du, Guocheng</au><au>Chen, Jian</au><au>Liu, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>83</volume><issue>1</issue><spage>E02312</spage><pages>E02312-</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%.
In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>27795308</pmid><doi>10.1128/aem.02312-16</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2017-01, Vol.83 (1), p.E02312 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5165124 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Aldehyde Reductase - genetics Aldehyde Reductase - metabolism Biocatalysis Biomass Biotechnology Carboxy-Lyases - genetics Carboxy-Lyases - metabolism Dicarboxylic Acids - metabolism Enterobacteriaceae - chemistry Enterobacteriaceae - genetics Enterobacteriaceae - isolation & purification Enterobacteriaceae - metabolism Furaldehyde - analogs & derivatives Furaldehyde - metabolism Furans - metabolism Gram-negative bacteria Industrial Microbiology - methods Isoenzymes - genetics Isoenzymes - metabolism Metabolic Engineering - methods Metabolic Networks and Pathways Metabolism Organic chemicals Oxidation Oxidation-Reduction Polyesters - chemistry Raoultella ornithinolytica Retinal Dehydrogenase - genetics Retinal Dehydrogenase - metabolism |
title | Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20Raoultella%20ornithinolytica%20BF60%20for%20Production%20of%202,5-Furandicarboxylic%20Acid%20from%205-Hydroxymethylfurfural&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Hossain,%20Gazi%20Sakir&rft.date=2017-01-01&rft.volume=83&rft.issue=1&rft.spage=E02312&rft.pages=E02312-&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.02312-16&rft_dat=%3Cproquest_pubme%3E4283479321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850714964&rft_id=info:pmid/27795308&rfr_iscdi=true |