Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans

Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2016-12, Vol.594 (24), p.7399-7417
Hauptverfasser: Brook, Matthew S., Wilkinson, Daniel J., Mitchell, William K., Lund, Jonathan N., Phillips, Bethan E., Szewczyk, Nathaniel J., Greenhaff, Paul L., Smith, Kenneth, Atherton, Philip J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7417
container_issue 24
container_start_page 7399
container_title The Journal of physiology
container_volume 594
creator Brook, Matthew S.
Wilkinson, Daniel J.
Mitchell, William K.
Lund, Jonathan N.
Phillips, Bethan E.
Szewczyk, Nathaniel J.
Greenhaff, Paul L.
Smith, Kenneth
Atherton, Philip J.
description Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P 
doi_str_mv 10.1113/JP272857
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5157077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855073683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5775-1b1ebbe671ae43fd229714ff7d764971f1c9b6fe61f0a2eab2381a180767bd3</originalsourceid><addsrcrecordid>eNqNkttqFTEUhgdR7LYKPoEEvOnNrlnJZDJzI0jxVAoW2vuQZNbsnZJJtslM677rI3jjC_okZtuDBxC8SuD_-JK1-KvqOdBDAOCvjk-ZZK2QD6oF1E23lLLjD6sFpYwtuRSwVz3J-YJS4LTrHld7TDai7mq6qL6dbYNdpxjinEmPg7NuysQFYudx9npyl0jGOVuPZJPihCXJ2zCtMbtMdOhJcibmOGpPjIsrDD-DOfSYvEOiV_j9-mvCYsK-8NpE7yxJO2rSwSKZIsEvmKzLuHt2PY865KfVo0H7jM9uz_3q7N3b86MPy5NP7z8evTlZWiGlWIIBNAYbCRprPvSMdRLqYZC9bOpyHcB2phmwgYFqhtow3oKGlspGmp7vV69vrJvZjNhbDFPSXm2SG3Xaqqid-jMJbq1W8VIJEJJKWQQHt4IUP8-YJzW6bNF7HbDsU0ErBJW8afn_oMBkLTgt6Mu_0Is4p1D2UKi6lSA6yn4JbYo5Jxzu_w1U7Uqh7kpR0Be_z3kP3rWgAIc3wJXzuP2nSJ0fnwKjTPAfraPEww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848715902</pqid></control><display><type>article</type><title>Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Brook, Matthew S. ; Wilkinson, Daniel J. ; Mitchell, William K. ; Lund, Jonathan N. ; Phillips, Bethan E. ; Szewczyk, Nathaniel J. ; Greenhaff, Paul L. ; Smith, Kenneth ; Atherton, Philip J.</creator><creatorcontrib>Brook, Matthew S. ; Wilkinson, Daniel J. ; Mitchell, William K. ; Lund, Jonathan N. ; Phillips, Bethan E. ; Szewczyk, Nathaniel J. ; Greenhaff, Paul L. ; Smith, Kenneth ; Atherton, Philip J.</creatorcontrib><description>Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P &lt; 0.01), while MVC increased in Y (+21 ± 5%; P &lt; 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET‐induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P &lt; 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c‐MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P &lt; 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/JP272857</identifier><identifier>PMID: 27654940</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Aged ; ageing ; Aging - physiology ; DNA - metabolism ; exercise ; Exercise Physiology ; Humans ; hypertrophy ; Hypertrophy - metabolism ; Male ; Muscle ; Muscle Physiology ; Muscle Proteins - biosynthesis ; Protein Biosynthesis ; protein synthesis ; Quadriceps Muscle - metabolism ; Quadriceps Muscle - pathology ; Research Paper ; Resistance Training ; ribosomal biogenesis ; Ribosomes - metabolism ; RNA - metabolism ; signalling ; stable isotope ; Young Adult</subject><ispartof>The Journal of physiology, 2016-12, Vol.594 (24), p.7399-7417</ispartof><rights>2016 The Authors. The Journal of Physiology published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society</rights><rights>2016 The Authors. The Journal of Physiology published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society.</rights><rights>Journal compilation © 2016 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5775-1b1ebbe671ae43fd229714ff7d764971f1c9b6fe61f0a2eab2381a180767bd3</citedby><cites>FETCH-LOGICAL-c5775-1b1ebbe671ae43fd229714ff7d764971f1c9b6fe61f0a2eab2381a180767bd3</cites><orcidid>0000-0003-4425-9746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27654940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brook, Matthew S.</creatorcontrib><creatorcontrib>Wilkinson, Daniel J.</creatorcontrib><creatorcontrib>Mitchell, William K.</creatorcontrib><creatorcontrib>Lund, Jonathan N.</creatorcontrib><creatorcontrib>Phillips, Bethan E.</creatorcontrib><creatorcontrib>Szewczyk, Nathaniel J.</creatorcontrib><creatorcontrib>Greenhaff, Paul L.</creatorcontrib><creatorcontrib>Smith, Kenneth</creatorcontrib><creatorcontrib>Atherton, Philip J.</creatorcontrib><title>Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P &lt; 0.01), while MVC increased in Y (+21 ± 5%; P &lt; 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET‐induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P &lt; 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c‐MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P &lt; 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.</description><subject>Adult</subject><subject>Aged</subject><subject>ageing</subject><subject>Aging - physiology</subject><subject>DNA - metabolism</subject><subject>exercise</subject><subject>Exercise Physiology</subject><subject>Humans</subject><subject>hypertrophy</subject><subject>Hypertrophy - metabolism</subject><subject>Male</subject><subject>Muscle</subject><subject>Muscle Physiology</subject><subject>Muscle Proteins - biosynthesis</subject><subject>Protein Biosynthesis</subject><subject>protein synthesis</subject><subject>Quadriceps Muscle - metabolism</subject><subject>Quadriceps Muscle - pathology</subject><subject>Research Paper</subject><subject>Resistance Training</subject><subject>ribosomal biogenesis</subject><subject>Ribosomes - metabolism</subject><subject>RNA - metabolism</subject><subject>signalling</subject><subject>stable isotope</subject><subject>Young Adult</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkttqFTEUhgdR7LYKPoEEvOnNrlnJZDJzI0jxVAoW2vuQZNbsnZJJtslM677rI3jjC_okZtuDBxC8SuD_-JK1-KvqOdBDAOCvjk-ZZK2QD6oF1E23lLLjD6sFpYwtuRSwVz3J-YJS4LTrHld7TDai7mq6qL6dbYNdpxjinEmPg7NuysQFYudx9npyl0jGOVuPZJPihCXJ2zCtMbtMdOhJcibmOGpPjIsrDD-DOfSYvEOiV_j9-mvCYsK-8NpE7yxJO2rSwSKZIsEvmKzLuHt2PY865KfVo0H7jM9uz_3q7N3b86MPy5NP7z8evTlZWiGlWIIBNAYbCRprPvSMdRLqYZC9bOpyHcB2phmwgYFqhtow3oKGlspGmp7vV69vrJvZjNhbDFPSXm2SG3Xaqqid-jMJbq1W8VIJEJJKWQQHt4IUP8-YJzW6bNF7HbDsU0ErBJW8afn_oMBkLTgt6Mu_0Is4p1D2UKi6lSA6yn4JbYo5Jxzu_w1U7Uqh7kpR0Be_z3kP3rWgAIc3wJXzuP2nSJ0fnwKjTPAfraPEww</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Brook, Matthew S.</creator><creator>Wilkinson, Daniel J.</creator><creator>Mitchell, William K.</creator><creator>Lund, Jonathan N.</creator><creator>Phillips, Bethan E.</creator><creator>Szewczyk, Nathaniel J.</creator><creator>Greenhaff, Paul L.</creator><creator>Smith, Kenneth</creator><creator>Atherton, Philip J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4425-9746</orcidid></search><sort><creationdate>20161215</creationdate><title>Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans</title><author>Brook, Matthew S. ; Wilkinson, Daniel J. ; Mitchell, William K. ; Lund, Jonathan N. ; Phillips, Bethan E. ; Szewczyk, Nathaniel J. ; Greenhaff, Paul L. ; Smith, Kenneth ; Atherton, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5775-1b1ebbe671ae43fd229714ff7d764971f1c9b6fe61f0a2eab2381a180767bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>ageing</topic><topic>Aging - physiology</topic><topic>DNA - metabolism</topic><topic>exercise</topic><topic>Exercise Physiology</topic><topic>Humans</topic><topic>hypertrophy</topic><topic>Hypertrophy - metabolism</topic><topic>Male</topic><topic>Muscle</topic><topic>Muscle Physiology</topic><topic>Muscle Proteins - biosynthesis</topic><topic>Protein Biosynthesis</topic><topic>protein synthesis</topic><topic>Quadriceps Muscle - metabolism</topic><topic>Quadriceps Muscle - pathology</topic><topic>Research Paper</topic><topic>Resistance Training</topic><topic>ribosomal biogenesis</topic><topic>Ribosomes - metabolism</topic><topic>RNA - metabolism</topic><topic>signalling</topic><topic>stable isotope</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brook, Matthew S.</creatorcontrib><creatorcontrib>Wilkinson, Daniel J.</creatorcontrib><creatorcontrib>Mitchell, William K.</creatorcontrib><creatorcontrib>Lund, Jonathan N.</creatorcontrib><creatorcontrib>Phillips, Bethan E.</creatorcontrib><creatorcontrib>Szewczyk, Nathaniel J.</creatorcontrib><creatorcontrib>Greenhaff, Paul L.</creatorcontrib><creatorcontrib>Smith, Kenneth</creatorcontrib><creatorcontrib>Atherton, Philip J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brook, Matthew S.</au><au>Wilkinson, Daniel J.</au><au>Mitchell, William K.</au><au>Lund, Jonathan N.</au><au>Phillips, Bethan E.</au><au>Szewczyk, Nathaniel J.</au><au>Greenhaff, Paul L.</au><au>Smith, Kenneth</au><au>Atherton, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>594</volume><issue>24</issue><spage>7399</spage><epage>7417</epage><pages>7399-7417</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1‐RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1‐RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P &lt; 0.01), while MVC increased in Y (+21 ± 5%; P &lt; 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET‐induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P &lt; 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c‐MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P &lt; 0.05). Anabolic resistance is thus multifactorial. Key points Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27654940</pmid><doi>10.1113/JP272857</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4425-9746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2016-12, Vol.594 (24), p.7399-7417
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5157077
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adult
Aged
ageing
Aging - physiology
DNA - metabolism
exercise
Exercise Physiology
Humans
hypertrophy
Hypertrophy - metabolism
Male
Muscle
Muscle Physiology
Muscle Proteins - biosynthesis
Protein Biosynthesis
protein synthesis
Quadriceps Muscle - metabolism
Quadriceps Muscle - pathology
Research Paper
Resistance Training
ribosomal biogenesis
Ribosomes - metabolism
RNA - metabolism
signalling
stable isotope
Young Adult
title Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age‐related anabolic resistance to exercise in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20deficits%20in%20cumulative%20muscle%20protein%20synthesis%20and%20ribosomal%20biogenesis%20underlie%20age%E2%80%90related%20anabolic%20resistance%20to%20exercise%20in%20humans&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Brook,%20Matthew%20S.&rft.date=2016-12-15&rft.volume=594&rft.issue=24&rft.spage=7399&rft.epage=7417&rft.pages=7399-7417&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/JP272857&rft_dat=%3Cproquest_pubme%3E1855073683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848715902&rft_id=info:pmid/27654940&rfr_iscdi=true