Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility
We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-07, Vol.5 (1), p.11745-11745, Article 11745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11745 |
---|---|
container_issue | 1 |
container_start_page | 11745 |
container_title | Scientific reports |
container_volume | 5 |
creator | Palmieri, Benoit Bresler, Yony Wirtz, Denis Grant, Martin |
description | We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch
alone
is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments. |
doi_str_mv | 10.1038/srep11745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5155609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1694965651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-33b4a7c549daa6bc1b581d00cbe93aa6431545296b6467b7b2727b97785d77303</originalsourceid><addsrcrecordid>eNplkVtvVCEUhYnR2Kb2wT9gTuKLNhnlzuBDE9PUS1Ljiz4T4OyZoeHACBzN_PtSp05GJQQI-9sLVhZCzwl-QzBbvq0FtoQoLh6hU4q5WFBG6eOj8wk6r_UW9yGo5kQ_RSdUEsb7PEXrL3NsYRthqN72dcojxGGVy-AhxmEK62JbyGkIqddSjnYHpb4brqOtLfgO1Mk2vxkctF8A6XdbHSBtbPJQe08LMbTdM_RkZWOF84f9DH3_cP3t6tPi5uvHz1fvbxZeYN4WjDlulRdcj9ZK54kTSzJi7B1o1m84I4J3G9JJLpVTjiqqnFZqKUalGGZn6HKvu53dBKOH1IqNZlvCZMvOZBvM35UUNmadfxpBhJBYd4FXDwIl_5ihNtMt3puyCfJcDZGaaymkIB19-Q96m-eSuj1DlloLyRSVnXq9p3zJtYe1OnyGYHOfoDkk2NkXx78_kH_y6sDFHqi9lNZQjp78T-0O4dul6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899563726</pqid></control><display><type>article</type><title>Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Palmieri, Benoit ; Bresler, Yony ; Wirtz, Denis ; Grant, Martin</creator><creatorcontrib>Palmieri, Benoit ; Bresler, Yony ; Wirtz, Denis ; Grant, Martin</creatorcontrib><description>We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch
alone
is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep11745</identifier><identifier>PMID: 26134134</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2266 ; 631/57/343/1361 ; 631/67/70 ; 639/766/747 ; Algorithms ; Cancer ; Cell adhesion & migration ; Cell Culture Techniques ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Computer Simulation ; Elasticity ; Humanities and Social Sciences ; Humans ; Models, Biological ; Motility ; multidisciplinary ; Science ; Thermodynamics</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.11745-11745, Article 11745</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-33b4a7c549daa6bc1b581d00cbe93aa6431545296b6467b7b2727b97785d77303</citedby><cites>FETCH-LOGICAL-c504t-33b4a7c549daa6bc1b581d00cbe93aa6431545296b6467b7b2727b97785d77303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155609/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155609/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26134134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palmieri, Benoit</creatorcontrib><creatorcontrib>Bresler, Yony</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Grant, Martin</creatorcontrib><title>Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch
alone
is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.</description><subject>631/57/2266</subject><subject>631/57/343/1361</subject><subject>631/67/70</subject><subject>639/766/747</subject><subject>Algorithms</subject><subject>Cancer</subject><subject>Cell adhesion & migration</subject><subject>Cell Culture Techniques</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Motility</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Thermodynamics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkVtvVCEUhYnR2Kb2wT9gTuKLNhnlzuBDE9PUS1Ljiz4T4OyZoeHACBzN_PtSp05GJQQI-9sLVhZCzwl-QzBbvq0FtoQoLh6hU4q5WFBG6eOj8wk6r_UW9yGo5kQ_RSdUEsb7PEXrL3NsYRthqN72dcojxGGVy-AhxmEK62JbyGkIqddSjnYHpb4brqOtLfgO1Mk2vxkctF8A6XdbHSBtbPJQe08LMbTdM_RkZWOF84f9DH3_cP3t6tPi5uvHz1fvbxZeYN4WjDlulRdcj9ZK54kTSzJi7B1o1m84I4J3G9JJLpVTjiqqnFZqKUalGGZn6HKvu53dBKOH1IqNZlvCZMvOZBvM35UUNmadfxpBhJBYd4FXDwIl_5ihNtMt3puyCfJcDZGaaymkIB19-Q96m-eSuj1DlloLyRSVnXq9p3zJtYe1OnyGYHOfoDkk2NkXx78_kH_y6sDFHqi9lNZQjp78T-0O4dul6g</recordid><startdate>20150702</startdate><enddate>20150702</enddate><creator>Palmieri, Benoit</creator><creator>Bresler, Yony</creator><creator>Wirtz, Denis</creator><creator>Grant, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150702</creationdate><title>Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility</title><author>Palmieri, Benoit ; Bresler, Yony ; Wirtz, Denis ; Grant, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-33b4a7c549daa6bc1b581d00cbe93aa6431545296b6467b7b2727b97785d77303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/57/2266</topic><topic>631/57/343/1361</topic><topic>631/67/70</topic><topic>639/766/747</topic><topic>Algorithms</topic><topic>Cancer</topic><topic>Cell adhesion & migration</topic><topic>Cell Culture Techniques</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Motility</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmieri, Benoit</creatorcontrib><creatorcontrib>Bresler, Yony</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Grant, Martin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmieri, Benoit</au><au>Bresler, Yony</au><au>Wirtz, Denis</au><au>Grant, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-07-02</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>11745</spage><epage>11745</epage><pages>11745-11745</pages><artnum>11745</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch
alone
is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26134134</pmid><doi>10.1038/srep11745</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2015-07, Vol.5 (1), p.11745-11745, Article 11745 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5155609 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/57/2266 631/57/343/1361 631/67/70 639/766/747 Algorithms Cancer Cell adhesion & migration Cell Culture Techniques Cell Line, Tumor Cell migration Cell Movement Computer Simulation Elasticity Humanities and Social Sciences Humans Models, Biological Motility multidisciplinary Science Thermodynamics |
title | Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20scale%20model%20for%20cell%20migration%20in%20monolayers:%20Elastic%20mismatch%20between%20cells%20enhances%20motility&rft.jtitle=Scientific%20reports&rft.au=Palmieri,%20Benoit&rft.date=2015-07-02&rft.volume=5&rft.issue=1&rft.spage=11745&rft.epage=11745&rft.pages=11745-11745&rft.artnum=11745&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep11745&rft_dat=%3Cproquest_pubme%3E1694965651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899563726&rft_id=info:pmid/26134134&rfr_iscdi=true |