Bayesian analysis of botanical epidemics using stochastic compartmental models
A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-08, Vol.101 (33), p.12120-12124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12124 |
---|---|
container_issue | 33 |
container_start_page | 12120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Gibson, G.J Kleczkowski, A Gilligan, C.A |
description | A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems. |
doi_str_mv | 10.1073/pnas.0400829101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373100</jstor_id><sourcerecordid>3373100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-cb7f0c76f134200f8ca6b158a108e34411d2a3637f286ee6f8982817c31160623</originalsourceid><addsrcrecordid>eNqNkbFv1DAUxi0EokdhZkEQdUBiSPuendjOwEArCpUqGKCz5fPZV5-SOLUTxP33OLpTr7BQLx6-3_f5PX-EvEY4RRDsbOh1OoUKQNIGAZ-QBUKDJa8aeEoWAFSUsqLVEXmR0gYAmlrCc3KENQPaVLgg38711iav-0L3ut0mn4rgimUYde-Nbgs7-JXtvEnFlHy_LtIYzK1OozeFCd2g49jZfsxgF1a2TS_JM6fbZF_t72Nyc_n558XX8vr7l6uLT9elqWsYS7MUDozgDllFAZw0mi-xlhpBWlZViCuqGWfCUcmt5U42kkoUhiFy4JQdk4-73GFadnZl8gxRt2qIvtNxq4L26m-l97dqHX6pGqt8sv_93h_D3WTTqDqfjG1b3dswJcW5aDh7BIhC1JQDZvDkH3ATppj_NCmaZS6wgQyd7SATQ0rRuvuJEdRcqJoLVYdCs-Ptw0UP_L7BDBR7YHYe4lAxppAinV_98B9EualtR_t7zOybHbvJTcd7mDHBEOaodzvZ6aD0Ovqkbn7M-wECo9hI9gerescA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367190</pqid></control><display><type>article</type><title>Bayesian analysis of botanical epidemics using stochastic compartmental models</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gibson, G.J ; Kleczkowski, A ; Gilligan, C.A</creator><creatorcontrib>Gibson, G.J ; Kleczkowski, A ; Gilligan, C.A</creatorcontrib><description>A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0400829101</identifier><identifier>PMID: 15302941</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Bayes Theorem ; Biological Sciences ; Biology ; Coinfection ; Control ; Disease models ; Epidemics ; Flowers & plants ; Infections ; Markov analysis ; Markov Chains ; Methods ; Modeling ; Models, Biological ; Monte Carlo Method ; Parametric models ; Pathogens ; Pest Control, Biological ; Physical Sciences ; Plant Diseases - microbiology ; Plant Diseases - statistics & numerical data ; Plants ; Raphanus - microbiology ; Raphanus sativus ; Rhizoctonia - pathogenicity ; Rhizoctonia solani ; Stochastic models ; Stochastic Processes ; Time Factors ; Trichoderma ; Trichoderma - physiology ; Trichoderma viride</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12120-12124</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 17, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-cb7f0c76f134200f8ca6b158a108e34411d2a3637f286ee6f8982817c31160623</citedby><cites>FETCH-LOGICAL-c550t-cb7f0c76f134200f8ca6b158a108e34411d2a3637f286ee6f8982817c31160623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15302941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gibson, G.J</creatorcontrib><creatorcontrib>Kleczkowski, A</creatorcontrib><creatorcontrib>Gilligan, C.A</creatorcontrib><title>Bayesian analysis of botanical epidemics using stochastic compartmental models</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Coinfection</subject><subject>Control</subject><subject>Disease models</subject><subject>Epidemics</subject><subject>Flowers & plants</subject><subject>Infections</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Methods</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Parametric models</subject><subject>Pathogens</subject><subject>Pest Control, Biological</subject><subject>Physical Sciences</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - statistics & numerical data</subject><subject>Plants</subject><subject>Raphanus - microbiology</subject><subject>Raphanus sativus</subject><subject>Rhizoctonia - pathogenicity</subject><subject>Rhizoctonia solani</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Time Factors</subject><subject>Trichoderma</subject><subject>Trichoderma - physiology</subject><subject>Trichoderma viride</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkbFv1DAUxi0EokdhZkEQdUBiSPuendjOwEArCpUqGKCz5fPZV5-SOLUTxP33OLpTr7BQLx6-3_f5PX-EvEY4RRDsbOh1OoUKQNIGAZ-QBUKDJa8aeEoWAFSUsqLVEXmR0gYAmlrCc3KENQPaVLgg38711iav-0L3ut0mn4rgimUYde-Nbgs7-JXtvEnFlHy_LtIYzK1OozeFCd2g49jZfsxgF1a2TS_JM6fbZF_t72Nyc_n558XX8vr7l6uLT9elqWsYS7MUDozgDllFAZw0mi-xlhpBWlZViCuqGWfCUcmt5U42kkoUhiFy4JQdk4-73GFadnZl8gxRt2qIvtNxq4L26m-l97dqHX6pGqt8sv_93h_D3WTTqDqfjG1b3dswJcW5aDh7BIhC1JQDZvDkH3ATppj_NCmaZS6wgQyd7SATQ0rRuvuJEdRcqJoLVYdCs-Ptw0UP_L7BDBR7YHYe4lAxppAinV_98B9EualtR_t7zOybHbvJTcd7mDHBEOaodzvZ6aD0Ovqkbn7M-wECo9hI9gerescA</recordid><startdate>20040817</startdate><enddate>20040817</enddate><creator>Gibson, G.J</creator><creator>Kleczkowski, A</creator><creator>Gilligan, C.A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040817</creationdate><title>Bayesian analysis of botanical epidemics using stochastic compartmental models</title><author>Gibson, G.J ; Kleczkowski, A ; Gilligan, C.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-cb7f0c76f134200f8ca6b158a108e34411d2a3637f286ee6f8982817c31160623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Coinfection</topic><topic>Control</topic><topic>Disease models</topic><topic>Epidemics</topic><topic>Flowers & plants</topic><topic>Infections</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Methods</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Parametric models</topic><topic>Pathogens</topic><topic>Pest Control, Biological</topic><topic>Physical Sciences</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - statistics & numerical data</topic><topic>Plants</topic><topic>Raphanus - microbiology</topic><topic>Raphanus sativus</topic><topic>Rhizoctonia - pathogenicity</topic><topic>Rhizoctonia solani</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Time Factors</topic><topic>Trichoderma</topic><topic>Trichoderma - physiology</topic><topic>Trichoderma viride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, G.J</creatorcontrib><creatorcontrib>Kleczkowski, A</creatorcontrib><creatorcontrib>Gilligan, C.A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, G.J</au><au>Kleczkowski, A</au><au>Gilligan, C.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of botanical epidemics using stochastic compartmental models</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-08-17</date><risdate>2004</risdate><volume>101</volume><issue>33</issue><spage>12120</spage><epage>12124</epage><pages>12120-12124</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15302941</pmid><doi>10.1073/pnas.0400829101</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12120-12124 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514444 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Bayes Theorem Biological Sciences Biology Coinfection Control Disease models Epidemics Flowers & plants Infections Markov analysis Markov Chains Methods Modeling Models, Biological Monte Carlo Method Parametric models Pathogens Pest Control, Biological Physical Sciences Plant Diseases - microbiology Plant Diseases - statistics & numerical data Plants Raphanus - microbiology Raphanus sativus Rhizoctonia - pathogenicity Rhizoctonia solani Stochastic models Stochastic Processes Time Factors Trichoderma Trichoderma - physiology Trichoderma viride |
title | Bayesian analysis of botanical epidemics using stochastic compartmental models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20botanical%20epidemics%20using%20stochastic%20compartmental%20models&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gibson,%20G.J&rft.date=2004-08-17&rft.volume=101&rft.issue=33&rft.spage=12120&rft.epage=12124&rft.pages=12120-12124&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0400829101&rft_dat=%3Cjstor_pubme%3E3373100%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201367190&rft_id=info:pmid/15302941&rft_jstor_id=3373100&rfr_iscdi=true |