peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis
The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2004-06, Vol.135 (2), p.814-827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | 2 |
container_start_page | 814 |
container_title | Plant physiology (Bethesda) |
container_volume | 135 |
creator | Lin, Y Cluette-Brown, J.E Goodman, H.M |
description | The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed. |
doi_str_mv | 10.1104/pp.103.036772 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281802</jstor_id><sourcerecordid>4281802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotuFIzcEOXHLMhPHsX3gUFVQkCpxKD1bjj3putqsg51F3X-Pq6wKnDh55Pc9640fY28QNojQfpymDQLfAO-kbJ6xFQre1I1o1XO2AigzKKXP2HnO9wCAHNuX7AwFSi46XLGbiVJ8CDmOVHkaggu0n6uLZPvg45RDrsbDbMtVzoQVPWxDH-ZchXGyIZGvBjvPx8q64Kt83M9bKpZX7MVgd5len841u_3y-cfl1_r6-9W3y4vr2okO5lpC72Wvne-dJqlLzKGV5GzLkQQ1usHOk5RKea-tdqrtpCfomsHpoXcC-Jp9Wt6dDv1I3pXkye7MlMJo09FEG8y_yj5szV38ZQS2WD5gzT6c_Cn-PFCezRiyo93O7ikesum6TgglxH9BlFILFE0B6wV0KeacaHgKg2Ae6zLTVEZulroK_-7vDf7Qp34K8HYB7vMc05PeNgoVPPrfL_Jgo7F3KWRze9OUlgE0V6Ak_w288qXd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17795152</pqid></control><display><type>article</type><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</creator><creatorcontrib>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</creatorcontrib><description>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.036772</identifier><identifier>PMID: 15173561</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - ultrastructure ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemical Processes and Macromolecular Structures ; biosynthesis ; Cotyledons ; embryo (plant) ; Embryos ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; fatty acid composition ; fatty acid esters ; Fatty acids ; Fatty Acids - biosynthesis ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; green fluorescent protein ; Green Fluorescent Proteins ; Lipid metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Microscopy, Electron ; molecular sequence data ; mutants ; Mutation ; nucleotide sequences ; Organelles ; Peroxins ; Peroxisomes ; Peroxisomes - genetics ; Peroxisomes - metabolism ; Peroxisomes - ultrastructure ; Plant Oils - metabolism ; plant proteins ; Plants ; recombinant fusion proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; reporter genes ; seedling growth ; Seedlings ; Seeds ; Seeds - genetics ; Seeds - physiology ; Seeds - ultrastructure ; shrunken seed 1 gene ; Starches ; transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2004-06, Vol.135 (2), p.814-827</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</citedby><cites>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281802$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281802$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,883,27911,27912,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15173561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Y</creatorcontrib><creatorcontrib>Cluette-Brown, J.E</creatorcontrib><creatorcontrib>Goodman, H.M</creatorcontrib><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - ultrastructure</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>biosynthesis</subject><subject>Cotyledons</subject><subject>embryo (plant)</subject><subject>Embryos</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>fatty acid composition</subject><subject>fatty acid esters</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Lipid metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy, Electron</subject><subject>molecular sequence data</subject><subject>mutants</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Organelles</subject><subject>Peroxins</subject><subject>Peroxisomes</subject><subject>Peroxisomes - genetics</subject><subject>Peroxisomes - metabolism</subject><subject>Peroxisomes - ultrastructure</subject><subject>Plant Oils - metabolism</subject><subject>plant proteins</subject><subject>Plants</subject><subject>recombinant fusion proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>reporter genes</subject><subject>seedling growth</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Seeds - ultrastructure</subject><subject>shrunken seed 1 gene</subject><subject>Starches</subject><subject>transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotuFIzcEOXHLMhPHsX3gUFVQkCpxKD1bjj3putqsg51F3X-Pq6wKnDh55Pc9640fY28QNojQfpymDQLfAO-kbJ6xFQre1I1o1XO2AigzKKXP2HnO9wCAHNuX7AwFSi46XLGbiVJ8CDmOVHkaggu0n6uLZPvg45RDrsbDbMtVzoQVPWxDH-ZchXGyIZGvBjvPx8q64Kt83M9bKpZX7MVgd5len841u_3y-cfl1_r6-9W3y4vr2okO5lpC72Wvne-dJqlLzKGV5GzLkQQ1usHOk5RKea-tdqrtpCfomsHpoXcC-Jp9Wt6dDv1I3pXkye7MlMJo09FEG8y_yj5szV38ZQS2WD5gzT6c_Cn-PFCezRiyo93O7ikesum6TgglxH9BlFILFE0B6wV0KeacaHgKg2Ae6zLTVEZulroK_-7vDf7Qp34K8HYB7vMc05PeNgoVPPrfL_Jgo7F3KWRze9OUlgE0V6Ak_w288qXd</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Lin, Y</creator><creator>Cluette-Brown, J.E</creator><creator>Goodman, H.M</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><author>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - ultrastructure</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>biosynthesis</topic><topic>Cotyledons</topic><topic>embryo (plant)</topic><topic>Embryos</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>fatty acid composition</topic><topic>fatty acid esters</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Lipid metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy, Electron</topic><topic>molecular sequence data</topic><topic>mutants</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Organelles</topic><topic>Peroxins</topic><topic>Peroxisomes</topic><topic>Peroxisomes - genetics</topic><topic>Peroxisomes - metabolism</topic><topic>Peroxisomes - ultrastructure</topic><topic>Plant Oils - metabolism</topic><topic>plant proteins</topic><topic>Plants</topic><topic>recombinant fusion proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>reporter genes</topic><topic>seedling growth</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Seeds - ultrastructure</topic><topic>shrunken seed 1 gene</topic><topic>Starches</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Y</creatorcontrib><creatorcontrib>Cluette-Brown, J.E</creatorcontrib><creatorcontrib>Goodman, H.M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Y</au><au>Cluette-Brown, J.E</au><au>Goodman, H.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>135</volume><issue>2</issue><spage>814</spage><epage>827</epage><pages>814-827</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>15173561</pmid><doi>10.1104/pp.103.036772</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-06, Vol.135 (2), p.814-827 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514117 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - ultrastructure Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biochemical Processes and Macromolecular Structures biosynthesis Cotyledons embryo (plant) Embryos Endoplasmic Reticulum - genetics Endoplasmic Reticulum - metabolism fatty acid composition fatty acid esters Fatty acids Fatty Acids - biosynthesis Gene Expression Regulation, Developmental Gene Expression Regulation, Plant green fluorescent protein Green Fluorescent Proteins Lipid metabolism Luminescent Proteins - genetics Luminescent Proteins - metabolism Microscopy, Electron molecular sequence data mutants Mutation nucleotide sequences Organelles Peroxins Peroxisomes Peroxisomes - genetics Peroxisomes - metabolism Peroxisomes - ultrastructure Plant Oils - metabolism plant proteins Plants recombinant fusion proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism reporter genes seedling growth Seedlings Seeds Seeds - genetics Seeds - physiology Seeds - ultrastructure shrunken seed 1 gene Starches transgenic plants |
title | peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=peroxisome%20deficient%20Arabidopsis%20mutant%20sse1%20exhibits%20impaired%20fatty%20acid%20synthesis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lin,%20Y&rft.date=2004-06-01&rft.volume=135&rft.issue=2&rft.spage=814&rft.epage=827&rft.pages=814-827&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.103.036772&rft_dat=%3Cjstor_pubme%3E4281802%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17795152&rft_id=info:pmid/15173561&rft_jstor_id=4281802&rfr_iscdi=true |