peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis

The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2004-06, Vol.135 (2), p.814-827
Hauptverfasser: Lin, Y, Cluette-Brown, J.E, Goodman, H.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 2
container_start_page 814
container_title Plant physiology (Bethesda)
container_volume 135
creator Lin, Y
Cluette-Brown, J.E
Goodman, H.M
description The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.
doi_str_mv 10.1104/pp.103.036772
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281802</jstor_id><sourcerecordid>4281802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotuFIzcEOXHLMhPHsX3gUFVQkCpxKD1bjj3putqsg51F3X-Pq6wKnDh55Pc9640fY28QNojQfpymDQLfAO-kbJ6xFQre1I1o1XO2AigzKKXP2HnO9wCAHNuX7AwFSi46XLGbiVJ8CDmOVHkaggu0n6uLZPvg45RDrsbDbMtVzoQVPWxDH-ZchXGyIZGvBjvPx8q64Kt83M9bKpZX7MVgd5len841u_3y-cfl1_r6-9W3y4vr2okO5lpC72Wvne-dJqlLzKGV5GzLkQQ1usHOk5RKea-tdqrtpCfomsHpoXcC-Jp9Wt6dDv1I3pXkye7MlMJo09FEG8y_yj5szV38ZQS2WD5gzT6c_Cn-PFCezRiyo93O7ikesum6TgglxH9BlFILFE0B6wV0KeacaHgKg2Ae6zLTVEZulroK_-7vDf7Qp34K8HYB7vMc05PeNgoVPPrfL_Jgo7F3KWRze9OUlgE0V6Ak_w288qXd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17795152</pqid></control><display><type>article</type><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</creator><creatorcontrib>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</creatorcontrib><description>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.036772</identifier><identifier>PMID: 15173561</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - ultrastructure ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemical Processes and Macromolecular Structures ; biosynthesis ; Cotyledons ; embryo (plant) ; Embryos ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; fatty acid composition ; fatty acid esters ; Fatty acids ; Fatty Acids - biosynthesis ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; green fluorescent protein ; Green Fluorescent Proteins ; Lipid metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Microscopy, Electron ; molecular sequence data ; mutants ; Mutation ; nucleotide sequences ; Organelles ; Peroxins ; Peroxisomes ; Peroxisomes - genetics ; Peroxisomes - metabolism ; Peroxisomes - ultrastructure ; Plant Oils - metabolism ; plant proteins ; Plants ; recombinant fusion proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; reporter genes ; seedling growth ; Seedlings ; Seeds ; Seeds - genetics ; Seeds - physiology ; Seeds - ultrastructure ; shrunken seed 1 gene ; Starches ; transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2004-06, Vol.135 (2), p.814-827</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>Copyright © 2004, American Society of Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</citedby><cites>FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281802$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281802$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,883,27911,27912,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15173561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Y</creatorcontrib><creatorcontrib>Cluette-Brown, J.E</creatorcontrib><creatorcontrib>Goodman, H.M</creatorcontrib><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - ultrastructure</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>biosynthesis</subject><subject>Cotyledons</subject><subject>embryo (plant)</subject><subject>Embryos</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>fatty acid composition</subject><subject>fatty acid esters</subject><subject>Fatty acids</subject><subject>Fatty Acids - biosynthesis</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Lipid metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy, Electron</subject><subject>molecular sequence data</subject><subject>mutants</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Organelles</subject><subject>Peroxins</subject><subject>Peroxisomes</subject><subject>Peroxisomes - genetics</subject><subject>Peroxisomes - metabolism</subject><subject>Peroxisomes - ultrastructure</subject><subject>Plant Oils - metabolism</subject><subject>plant proteins</subject><subject>Plants</subject><subject>recombinant fusion proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>reporter genes</subject><subject>seedling growth</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Seeds - ultrastructure</subject><subject>shrunken seed 1 gene</subject><subject>Starches</subject><subject>transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotuFIzcEOXHLMhPHsX3gUFVQkCpxKD1bjj3putqsg51F3X-Pq6wKnDh55Pc9640fY28QNojQfpymDQLfAO-kbJ6xFQre1I1o1XO2AigzKKXP2HnO9wCAHNuX7AwFSi46XLGbiVJ8CDmOVHkaggu0n6uLZPvg45RDrsbDbMtVzoQVPWxDH-ZchXGyIZGvBjvPx8q64Kt83M9bKpZX7MVgd5len841u_3y-cfl1_r6-9W3y4vr2okO5lpC72Wvne-dJqlLzKGV5GzLkQQ1usHOk5RKea-tdqrtpCfomsHpoXcC-Jp9Wt6dDv1I3pXkye7MlMJo09FEG8y_yj5szV38ZQS2WD5gzT6c_Cn-PFCezRiyo93O7ikesum6TgglxH9BlFILFE0B6wV0KeacaHgKg2Ae6zLTVEZulroK_-7vDf7Qp34K8HYB7vMc05PeNgoVPPrfL_Jgo7F3KWRze9OUlgE0V6Ak_w288qXd</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Lin, Y</creator><creator>Cluette-Brown, J.E</creator><creator>Goodman, H.M</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</title><author>Lin, Y ; Cluette-Brown, J.E ; Goodman, H.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-70bd7b9cdbc9e79889f47eca431e5e29216de7788dd9a9c8467de062fc9fbc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - ultrastructure</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>biosynthesis</topic><topic>Cotyledons</topic><topic>embryo (plant)</topic><topic>Embryos</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>fatty acid composition</topic><topic>fatty acid esters</topic><topic>Fatty acids</topic><topic>Fatty Acids - biosynthesis</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Lipid metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy, Electron</topic><topic>molecular sequence data</topic><topic>mutants</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Organelles</topic><topic>Peroxins</topic><topic>Peroxisomes</topic><topic>Peroxisomes - genetics</topic><topic>Peroxisomes - metabolism</topic><topic>Peroxisomes - ultrastructure</topic><topic>Plant Oils - metabolism</topic><topic>plant proteins</topic><topic>Plants</topic><topic>recombinant fusion proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>reporter genes</topic><topic>seedling growth</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Seeds - ultrastructure</topic><topic>shrunken seed 1 gene</topic><topic>Starches</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Y</creatorcontrib><creatorcontrib>Cluette-Brown, J.E</creatorcontrib><creatorcontrib>Goodman, H.M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Y</au><au>Cluette-Brown, J.E</au><au>Goodman, H.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>135</volume><issue>2</issue><spage>814</spage><epage>827</epage><pages>814-827</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>15173561</pmid><doi>10.1104/pp.103.036772</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-06, Vol.135 (2), p.814-827
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_514117
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - ultrastructure
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biochemical Processes and Macromolecular Structures
biosynthesis
Cotyledons
embryo (plant)
Embryos
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
fatty acid composition
fatty acid esters
Fatty acids
Fatty Acids - biosynthesis
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
green fluorescent protein
Green Fluorescent Proteins
Lipid metabolism
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Microscopy, Electron
molecular sequence data
mutants
Mutation
nucleotide sequences
Organelles
Peroxins
Peroxisomes
Peroxisomes - genetics
Peroxisomes - metabolism
Peroxisomes - ultrastructure
Plant Oils - metabolism
plant proteins
Plants
recombinant fusion proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
reporter genes
seedling growth
Seedlings
Seeds
Seeds - genetics
Seeds - physiology
Seeds - ultrastructure
shrunken seed 1 gene
Starches
transgenic plants
title peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=peroxisome%20deficient%20Arabidopsis%20mutant%20sse1%20exhibits%20impaired%20fatty%20acid%20synthesis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lin,%20Y&rft.date=2004-06-01&rft.volume=135&rft.issue=2&rft.spage=814&rft.epage=827&rft.pages=814-827&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.103.036772&rft_dat=%3Cjstor_pubme%3E4281802%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17795152&rft_id=info:pmid/15173561&rft_jstor_id=4281802&rfr_iscdi=true