Robust background modelling in DIALS

A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2016-12, Vol.49 (6), p.1912-1921
Hauptverfasser: Parkhurst, James M., Winter, Graeme, Waterman, David G., Fuentes-Montero, Luis, Gildea, Richard J., Murshudov, Garib N., Evans, Gwyndaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1921
container_issue 6
container_start_page 1912
container_title Journal of applied crystallography
container_volume 49
creator Parkhurst, James M.
Winter, Graeme
Waterman, David G.
Fuentes-Montero, Luis
Gildea, Richard J.
Murshudov, Garib N.
Evans, Gwyndaf
description A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias. The application of a robust generalized linear model framework for the modelling of reflection backgrounds in X‐ray diffraction images is described.
doi_str_mv 10.1107/S1600576716013595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5139990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4270485931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5488-259d1cb4a997f4f19903f398b1486f26ce797e2c393766d7ca895708150ad5c63</originalsourceid><addsrcrecordid>eNqNkUlPIzEQhS00iCXwA-aCIg0HLg3el8tIIexEgAhojpbb7c40dNpgp1n-PQ6BCJjDcCqr_L1nVz0AfiK4jRAUO0PEIWSCi1QRYYotgJVpK5v2fnw4L4PVGG8gRFxgvASWsVASMihXwOalz9s46ebG3o6Cb5uiO_aFq-uqGXWrprt33BsM18Biaero1t9qB1wf7F_1j7LB-eFxvzfILKNSZpipAtmcGqVESUukFCQlUTJHVPISc-uEEg5boojgvBDWSMUElIhBUzDLSQf8nvnetfnYFdY1k2BqfReqsQnP2ptKf75pqr965B80Q0RNX-uArTeD4O9bFyd6XEWbpjGN823USHLKKFNCfQNlmEvBMErory_ojW9DkzaRKMohFhTRRKEZZYOPMbhy_m8E9TQu_U9cSbPxceC54j2fBKgZ8FjV7vn_jvqkf4l7Fwy-arOZtooT9zTXmnCruSCC6T9nh1runqaVDKkm5AUoratv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846027414</pqid></control><display><type>article</type><title>Robust background modelling in DIALS</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Parkhurst, James M. ; Winter, Graeme ; Waterman, David G. ; Fuentes-Montero, Luis ; Gildea, Richard J. ; Murshudov, Garib N. ; Evans, Gwyndaf</creator><creatorcontrib>Parkhurst, James M. ; Winter, Graeme ; Waterman, David G. ; Fuentes-Montero, Luis ; Gildea, Richard J. ; Murshudov, Garib N. ; Evans, Gwyndaf</creatorcontrib><description>A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias. The application of a robust generalized linear model framework for the modelling of reflection backgrounds in X‐ray diffraction images is described.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576716013595</identifier><identifier>PMID: 27980508</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; background modelling ; Crystallography ; Estimating ; Generalized linear models ; integration ; Mathematical models ; Modelling ; Outliers (statistics) ; Pixels ; Reflection ; Research Papers ; robust outlier rejection ; Robustness</subject><ispartof>Journal of applied crystallography, 2016-12, Vol.49 (6), p.1912-1921</ispartof><rights>James M. Parkhurst et al. 2016</rights><rights>James M. Parkhurst et al. 2016</rights><rights>James M. Parkhurst et al. 2016 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5488-259d1cb4a997f4f19903f398b1486f26ce797e2c393766d7ca895708150ad5c63</citedby><cites>FETCH-LOGICAL-c5488-259d1cb4a997f4f19903f398b1486f26ce797e2c393766d7ca895708150ad5c63</cites><orcidid>0000-0002-6079-2201 ; 0000-0001-6483-3587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576716013595$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576716013595$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27980508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parkhurst, James M.</creatorcontrib><creatorcontrib>Winter, Graeme</creatorcontrib><creatorcontrib>Waterman, David G.</creatorcontrib><creatorcontrib>Fuentes-Montero, Luis</creatorcontrib><creatorcontrib>Gildea, Richard J.</creatorcontrib><creatorcontrib>Murshudov, Garib N.</creatorcontrib><creatorcontrib>Evans, Gwyndaf</creatorcontrib><title>Robust background modelling in DIALS</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias. The application of a robust generalized linear model framework for the modelling of reflection backgrounds in X‐ray diffraction images is described.</description><subject>Algorithms</subject><subject>background modelling</subject><subject>Crystallography</subject><subject>Estimating</subject><subject>Generalized linear models</subject><subject>integration</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Outliers (statistics)</subject><subject>Pixels</subject><subject>Reflection</subject><subject>Research Papers</subject><subject>robust outlier rejection</subject><subject>Robustness</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqNkUlPIzEQhS00iCXwA-aCIg0HLg3el8tIIexEgAhojpbb7c40dNpgp1n-PQ6BCJjDcCqr_L1nVz0AfiK4jRAUO0PEIWSCi1QRYYotgJVpK5v2fnw4L4PVGG8gRFxgvASWsVASMihXwOalz9s46ebG3o6Cb5uiO_aFq-uqGXWrprt33BsM18Biaero1t9qB1wf7F_1j7LB-eFxvzfILKNSZpipAtmcGqVESUukFCQlUTJHVPISc-uEEg5boojgvBDWSMUElIhBUzDLSQf8nvnetfnYFdY1k2BqfReqsQnP2ptKf75pqr965B80Q0RNX-uArTeD4O9bFyd6XEWbpjGN823USHLKKFNCfQNlmEvBMErory_ojW9DkzaRKMohFhTRRKEZZYOPMbhy_m8E9TQu_U9cSbPxceC54j2fBKgZ8FjV7vn_jvqkf4l7Fwy-arOZtooT9zTXmnCruSCC6T9nh1runqaVDKkm5AUoratv</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Parkhurst, James M.</creator><creator>Winter, Graeme</creator><creator>Waterman, David G.</creator><creator>Fuentes-Montero, Luis</creator><creator>Gildea, Richard J.</creator><creator>Murshudov, Garib N.</creator><creator>Evans, Gwyndaf</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6079-2201</orcidid><orcidid>https://orcid.org/0000-0001-6483-3587</orcidid></search><sort><creationdate>201612</creationdate><title>Robust background modelling in DIALS</title><author>Parkhurst, James M. ; Winter, Graeme ; Waterman, David G. ; Fuentes-Montero, Luis ; Gildea, Richard J. ; Murshudov, Garib N. ; Evans, Gwyndaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5488-259d1cb4a997f4f19903f398b1486f26ce797e2c393766d7ca895708150ad5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>background modelling</topic><topic>Crystallography</topic><topic>Estimating</topic><topic>Generalized linear models</topic><topic>integration</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Outliers (statistics)</topic><topic>Pixels</topic><topic>Reflection</topic><topic>Research Papers</topic><topic>robust outlier rejection</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parkhurst, James M.</creatorcontrib><creatorcontrib>Winter, Graeme</creatorcontrib><creatorcontrib>Waterman, David G.</creatorcontrib><creatorcontrib>Fuentes-Montero, Luis</creatorcontrib><creatorcontrib>Gildea, Richard J.</creatorcontrib><creatorcontrib>Murshudov, Garib N.</creatorcontrib><creatorcontrib>Evans, Gwyndaf</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parkhurst, James M.</au><au>Winter, Graeme</au><au>Waterman, David G.</au><au>Fuentes-Montero, Luis</au><au>Gildea, Richard J.</au><au>Murshudov, Garib N.</au><au>Evans, Gwyndaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust background modelling in DIALS</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2016-12</date><risdate>2016</risdate><volume>49</volume><issue>6</issue><spage>1912</spage><epage>1921</epage><pages>1912-1921</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias. The application of a robust generalized linear model framework for the modelling of reflection backgrounds in X‐ray diffraction images is described.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>27980508</pmid><doi>10.1107/S1600576716013595</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6079-2201</orcidid><orcidid>https://orcid.org/0000-0001-6483-3587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2016-12, Vol.49 (6), p.1912-1921
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5139990
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Algorithms
background modelling
Crystallography
Estimating
Generalized linear models
integration
Mathematical models
Modelling
Outliers (statistics)
Pixels
Reflection
Research Papers
robust outlier rejection
Robustness
title Robust background modelling in DIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20background%20modelling%20in%20DIALS&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Parkhurst,%20James%20M.&rft.date=2016-12&rft.volume=49&rft.issue=6&rft.spage=1912&rft.epage=1921&rft.pages=1912-1921&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576716013595&rft_dat=%3Cproquest_pubme%3E4270485931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846027414&rft_id=info:pmid/27980508&rfr_iscdi=true