Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood

Summary Although all young children nap, the neurophysiological features and associated developmental trajectories of daytime sleep remain largely unknown. Longitudinal studies of napping physiology are fundamental to understanding sleep regulation during early childhood, a sensitive period in brain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sleep research 2016-12, Vol.25 (6), p.646-654
Hauptverfasser: Kurth, Salome, Lassonde, Jonathan M., Pierpoint, Lauren A., Rusterholz, Thomas, Jenni, Oskar G., McClain, Ian J., Achermann, Peter, LeBourgeois, Monique K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 6
container_start_page 646
container_title Journal of sleep research
container_volume 25
creator Kurth, Salome
Lassonde, Jonathan M.
Pierpoint, Lauren A.
Rusterholz, Thomas
Jenni, Oskar G.
McClain, Ian J.
Achermann, Peter
LeBourgeois, Monique K.
description Summary Although all young children nap, the neurophysiological features and associated developmental trajectories of daytime sleep remain largely unknown. Longitudinal studies of napping physiology are fundamental to understanding sleep regulation during early childhood, a sensitive period in brain and behaviour development and a time when children transition from a biphasic to a monophasic sleep–wakefulness pattern. We investigated daytime sleep in eight healthy children with sleep electroencephalography (EEG) assessments at three longitudinal points: 2 years (2.5–3.0 years), 3 years (3.5–4.0 years) and 5 years (5.5–6.0 years). At each age, we measured nap EEG during three randomized conditions: after 4 h (morning nap), 7 h (afternoon nap) and 10 h (evening nap) duration of prior wakefulness. Developmental changes in sleep were most prevalent in the afternoon nap (e.g. decrease in sleep duration by 30 min from 2 to 3 years and by 20 min from 3 to 5 years). In contrast, nap sleep architecture (% of sleep stages) remained unchanged across age. Maturational changes in non‐rapid eye movement sleep EEG power were pronounced in the slow wave activity (SWA, 0.75–4.5 Hz), theta (4.75–7.75 Hz) and sigma (10–15 Hz) frequency ranges. These findings indicate that the primary marker of sleep depth, SWA, is less apparent in daytime naps as children mature. Moreover, our fundamental data provide insight into associations between sleep regulation and functional modifications in the central nervous system during early childhood.
doi_str_mv 10.1111/jsr.12427
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5135687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859493568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-700adea8808b1c0dfa21364fbbf0e520548cab1663b2876b30b771b067ffc8b13</originalsourceid><addsrcrecordid>eNp1kV9P3iAUh4nRzHduF_sCC5d6UQVaCt2FiXm3-ScmSza9JtCevsXQ0kGr6bcf7lWjF3IDgYfnnJMfQl8oOaZpndzFcExZwcQOWtG85BmTZbWLVqQqWUYp4fvoY4x3hFDB8-oD2meCcUaLYoX0d7gH58cehgn7Fg96xAPMwY_dEq13frN8w2MAZ3s76LBgO0S76aaYDpPH0QGMOMBmdnqyfki3GHRwC64765rO--YT2mu1i_D5aT9Atz9_3Kwvsutf55frs-usLgopMkGIbkBLSaShNWlazdIoRWtMS4AzwgtZa0PLMjdMitLkxAhBDSlF29bpS36ATrfecTY9NHUaKGinxmD71Lfy2qq3L4Pt1MbfK05zXkqRBIdPguD_zhAn1dtYg3N6AD9HRSWviuqRTejRFq2DjzFA-1KGEvUYiUqRqP-RJPbr675eyOcMEnCyBR6sg-V9k7r683ur_Acv9JkT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859493568</pqid></control><display><type>article</type><title>Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Kurth, Salome ; Lassonde, Jonathan M. ; Pierpoint, Lauren A. ; Rusterholz, Thomas ; Jenni, Oskar G. ; McClain, Ian J. ; Achermann, Peter ; LeBourgeois, Monique K.</creator><creatorcontrib>Kurth, Salome ; Lassonde, Jonathan M. ; Pierpoint, Lauren A. ; Rusterholz, Thomas ; Jenni, Oskar G. ; McClain, Ian J. ; Achermann, Peter ; LeBourgeois, Monique K.</creatorcontrib><description>Summary Although all young children nap, the neurophysiological features and associated developmental trajectories of daytime sleep remain largely unknown. Longitudinal studies of napping physiology are fundamental to understanding sleep regulation during early childhood, a sensitive period in brain and behaviour development and a time when children transition from a biphasic to a monophasic sleep–wakefulness pattern. We investigated daytime sleep in eight healthy children with sleep electroencephalography (EEG) assessments at three longitudinal points: 2 years (2.5–3.0 years), 3 years (3.5–4.0 years) and 5 years (5.5–6.0 years). At each age, we measured nap EEG during three randomized conditions: after 4 h (morning nap), 7 h (afternoon nap) and 10 h (evening nap) duration of prior wakefulness. Developmental changes in sleep were most prevalent in the afternoon nap (e.g. decrease in sleep duration by 30 min from 2 to 3 years and by 20 min from 3 to 5 years). In contrast, nap sleep architecture (% of sleep stages) remained unchanged across age. Maturational changes in non‐rapid eye movement sleep EEG power were pronounced in the slow wave activity (SWA, 0.75–4.5 Hz), theta (4.75–7.75 Hz) and sigma (10–15 Hz) frequency ranges. These findings indicate that the primary marker of sleep depth, SWA, is less apparent in daytime naps as children mature. Moreover, our fundamental data provide insight into associations between sleep regulation and functional modifications in the central nervous system during early childhood.</description><identifier>ISSN: 0962-1105</identifier><identifier>EISSN: 1365-2869</identifier><identifier>DOI: 10.1111/jsr.12427</identifier><identifier>PMID: 27252144</identifier><language>eng</language><publisher>England</publisher><subject>brain development ; Child ; Child Behavior - physiology ; Child Development - physiology ; Child, Preschool ; EEG power spectra ; Electroencephalography ; Female ; Humans ; Male ; napping ; Neurophysiology ; Random Allocation ; Sleep - physiology ; sleep electroencephalography ; sleep homeostasis ; Sleep Stages - physiology ; slow wave activity ; Time Factors ; Wakefulness - physiology</subject><ispartof>Journal of sleep research, 2016-12, Vol.25 (6), p.646-654</ispartof><rights>2016 European Sleep Research Society</rights><rights>2016 European Sleep Research Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-700adea8808b1c0dfa21364fbbf0e520548cab1663b2876b30b771b067ffc8b13</citedby><cites>FETCH-LOGICAL-c4487-700adea8808b1c0dfa21364fbbf0e520548cab1663b2876b30b771b067ffc8b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjsr.12427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjsr.12427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27252144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurth, Salome</creatorcontrib><creatorcontrib>Lassonde, Jonathan M.</creatorcontrib><creatorcontrib>Pierpoint, Lauren A.</creatorcontrib><creatorcontrib>Rusterholz, Thomas</creatorcontrib><creatorcontrib>Jenni, Oskar G.</creatorcontrib><creatorcontrib>McClain, Ian J.</creatorcontrib><creatorcontrib>Achermann, Peter</creatorcontrib><creatorcontrib>LeBourgeois, Monique K.</creatorcontrib><title>Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood</title><title>Journal of sleep research</title><addtitle>J Sleep Res</addtitle><description>Summary Although all young children nap, the neurophysiological features and associated developmental trajectories of daytime sleep remain largely unknown. Longitudinal studies of napping physiology are fundamental to understanding sleep regulation during early childhood, a sensitive period in brain and behaviour development and a time when children transition from a biphasic to a monophasic sleep–wakefulness pattern. We investigated daytime sleep in eight healthy children with sleep electroencephalography (EEG) assessments at three longitudinal points: 2 years (2.5–3.0 years), 3 years (3.5–4.0 years) and 5 years (5.5–6.0 years). At each age, we measured nap EEG during three randomized conditions: after 4 h (morning nap), 7 h (afternoon nap) and 10 h (evening nap) duration of prior wakefulness. Developmental changes in sleep were most prevalent in the afternoon nap (e.g. decrease in sleep duration by 30 min from 2 to 3 years and by 20 min from 3 to 5 years). In contrast, nap sleep architecture (% of sleep stages) remained unchanged across age. Maturational changes in non‐rapid eye movement sleep EEG power were pronounced in the slow wave activity (SWA, 0.75–4.5 Hz), theta (4.75–7.75 Hz) and sigma (10–15 Hz) frequency ranges. These findings indicate that the primary marker of sleep depth, SWA, is less apparent in daytime naps as children mature. Moreover, our fundamental data provide insight into associations between sleep regulation and functional modifications in the central nervous system during early childhood.</description><subject>brain development</subject><subject>Child</subject><subject>Child Behavior - physiology</subject><subject>Child Development - physiology</subject><subject>Child, Preschool</subject><subject>EEG power spectra</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>napping</subject><subject>Neurophysiology</subject><subject>Random Allocation</subject><subject>Sleep - physiology</subject><subject>sleep electroencephalography</subject><subject>sleep homeostasis</subject><subject>Sleep Stages - physiology</subject><subject>slow wave activity</subject><subject>Time Factors</subject><subject>Wakefulness - physiology</subject><issn>0962-1105</issn><issn>1365-2869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV9P3iAUh4nRzHduF_sCC5d6UQVaCt2FiXm3-ScmSza9JtCevsXQ0kGr6bcf7lWjF3IDgYfnnJMfQl8oOaZpndzFcExZwcQOWtG85BmTZbWLVqQqWUYp4fvoY4x3hFDB8-oD2meCcUaLYoX0d7gH58cehgn7Fg96xAPMwY_dEq13frN8w2MAZ3s76LBgO0S76aaYDpPH0QGMOMBmdnqyfki3GHRwC64765rO--YT2mu1i_D5aT9Atz9_3Kwvsutf55frs-usLgopMkGIbkBLSaShNWlazdIoRWtMS4AzwgtZa0PLMjdMitLkxAhBDSlF29bpS36ATrfecTY9NHUaKGinxmD71Lfy2qq3L4Pt1MbfK05zXkqRBIdPguD_zhAn1dtYg3N6AD9HRSWviuqRTejRFq2DjzFA-1KGEvUYiUqRqP-RJPbr675eyOcMEnCyBR6sg-V9k7r683ur_Acv9JkT</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Kurth, Salome</creator><creator>Lassonde, Jonathan M.</creator><creator>Pierpoint, Lauren A.</creator><creator>Rusterholz, Thomas</creator><creator>Jenni, Oskar G.</creator><creator>McClain, Ian J.</creator><creator>Achermann, Peter</creator><creator>LeBourgeois, Monique K.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>201612</creationdate><title>Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood</title><author>Kurth, Salome ; Lassonde, Jonathan M. ; Pierpoint, Lauren A. ; Rusterholz, Thomas ; Jenni, Oskar G. ; McClain, Ian J. ; Achermann, Peter ; LeBourgeois, Monique K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-700adea8808b1c0dfa21364fbbf0e520548cab1663b2876b30b771b067ffc8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>brain development</topic><topic>Child</topic><topic>Child Behavior - physiology</topic><topic>Child Development - physiology</topic><topic>Child, Preschool</topic><topic>EEG power spectra</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>napping</topic><topic>Neurophysiology</topic><topic>Random Allocation</topic><topic>Sleep - physiology</topic><topic>sleep electroencephalography</topic><topic>sleep homeostasis</topic><topic>Sleep Stages - physiology</topic><topic>slow wave activity</topic><topic>Time Factors</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurth, Salome</creatorcontrib><creatorcontrib>Lassonde, Jonathan M.</creatorcontrib><creatorcontrib>Pierpoint, Lauren A.</creatorcontrib><creatorcontrib>Rusterholz, Thomas</creatorcontrib><creatorcontrib>Jenni, Oskar G.</creatorcontrib><creatorcontrib>McClain, Ian J.</creatorcontrib><creatorcontrib>Achermann, Peter</creatorcontrib><creatorcontrib>LeBourgeois, Monique K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of sleep research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurth, Salome</au><au>Lassonde, Jonathan M.</au><au>Pierpoint, Lauren A.</au><au>Rusterholz, Thomas</au><au>Jenni, Oskar G.</au><au>McClain, Ian J.</au><au>Achermann, Peter</au><au>LeBourgeois, Monique K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood</atitle><jtitle>Journal of sleep research</jtitle><addtitle>J Sleep Res</addtitle><date>2016-12</date><risdate>2016</risdate><volume>25</volume><issue>6</issue><spage>646</spage><epage>654</epage><pages>646-654</pages><issn>0962-1105</issn><eissn>1365-2869</eissn><abstract>Summary Although all young children nap, the neurophysiological features and associated developmental trajectories of daytime sleep remain largely unknown. Longitudinal studies of napping physiology are fundamental to understanding sleep regulation during early childhood, a sensitive period in brain and behaviour development and a time when children transition from a biphasic to a monophasic sleep–wakefulness pattern. We investigated daytime sleep in eight healthy children with sleep electroencephalography (EEG) assessments at three longitudinal points: 2 years (2.5–3.0 years), 3 years (3.5–4.0 years) and 5 years (5.5–6.0 years). At each age, we measured nap EEG during three randomized conditions: after 4 h (morning nap), 7 h (afternoon nap) and 10 h (evening nap) duration of prior wakefulness. Developmental changes in sleep were most prevalent in the afternoon nap (e.g. decrease in sleep duration by 30 min from 2 to 3 years and by 20 min from 3 to 5 years). In contrast, nap sleep architecture (% of sleep stages) remained unchanged across age. Maturational changes in non‐rapid eye movement sleep EEG power were pronounced in the slow wave activity (SWA, 0.75–4.5 Hz), theta (4.75–7.75 Hz) and sigma (10–15 Hz) frequency ranges. These findings indicate that the primary marker of sleep depth, SWA, is less apparent in daytime naps as children mature. Moreover, our fundamental data provide insight into associations between sleep regulation and functional modifications in the central nervous system during early childhood.</abstract><cop>England</cop><pmid>27252144</pmid><doi>10.1111/jsr.12427</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1105
ispartof Journal of sleep research, 2016-12, Vol.25 (6), p.646-654
issn 0962-1105
1365-2869
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5135687
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects brain development
Child
Child Behavior - physiology
Child Development - physiology
Child, Preschool
EEG power spectra
Electroencephalography
Female
Humans
Male
napping
Neurophysiology
Random Allocation
Sleep - physiology
sleep electroencephalography
sleep homeostasis
Sleep Stages - physiology
slow wave activity
Time Factors
Wakefulness - physiology
title Development of nap neurophysiology: preliminary insights into sleep regulation in early childhood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20nap%20neurophysiology:%20preliminary%20insights%20into%20sleep%20regulation%20in%20early%20childhood&rft.jtitle=Journal%20of%20sleep%20research&rft.au=Kurth,%20Salome&rft.date=2016-12&rft.volume=25&rft.issue=6&rft.spage=646&rft.epage=654&rft.pages=646-654&rft.issn=0962-1105&rft.eissn=1365-2869&rft_id=info:doi/10.1111/jsr.12427&rft_dat=%3Cproquest_pubme%3E1859493568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859493568&rft_id=info:pmid/27252144&rfr_iscdi=true