Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium

Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2016-11, Vol.283 (22), p.4128-4148
Hauptverfasser: Jóźwik, Ilona K., Kiss, Flora M., Gricman, Łukasz, Abdulmughni, Ammar, Brill, Elisa, Zapp, Josef, Pleiss, Juergen, Bernhardt, Rita, Thunnissen, Andy‐Mark W. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4148
container_issue 22
container_start_page 4128
container_title The FEBS journal
container_volume 283
creator Jóźwik, Ilona K.
Kiss, Flora M.
Gricman, Łukasz
Abdulmughni, Ammar
Brill, Elisa
Zapp, Josef
Pleiss, Juergen
Bernhardt, Rita
Thunnissen, Andy‐Mark W. H.
description Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6. Comprehensive functional and structural characterization of the steroid‐specific P450 monooxygenase CYP109E1. The bacterial enzyme converts testosterone to 16β‐hydroxytestosterone with high regio‐ and stereoselectivity. Open and closed crystal structures were determined, related to substrate‐free and steroid‐bound states. Our data, combined with results from MD simulations and site
doi_str_mv 10.1111/febs.13911
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5132081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266276681</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4711-8a7029f3ff0acd572c9b391fa2171b8832d606c0b8a12e4251331827dcd261813</originalsourceid><addsrcrecordid>eNpdkdFLHDEQxkOpVGv70j9AAn3x5TSTZJPsi6DHWQXBg7OgTyGbZO9y7G7sZrft_feNpx7VeZlh5sfHfHwIfQNyArlOa1-lE2AlwAd0AJLTCReF-rib-f0--pzSmhBW8LL8hPapFEoICQdovRj60Q5jbxpcmRQSjjVOg-9jcLgKnQvdEpvO4fg3ODOE2OFqg4eVx3YzRLvqY-vxnBcETx_mQMoZ4Drv8IWxoWnGhFu_NFkujO0XtFebJvmvL_0Q_byc3U2vJje3P66n5zeTNZcAE2UkoWXN6poY6wpJbVllb7WhIKFSilEniLCkUgao57QAxkBR6ayjAhSwQ3T2rPs4Vq131ndDdqcf-9CafqOjCfrtpQsrvYy_dVaiZCtw_CLQx1-jT4NuQ7K-aUzn45g0qIJIWQhWZPT7O3Qdx77L9jLFuZIgmcjU0f8f7V55jSED8Az8CY3f7O5A9FPA-ilgvQ1YX84uFtuJ_QMJKpfO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844871736</pqid></control><display><type>article</type><title>Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Jóźwik, Ilona K. ; Kiss, Flora M. ; Gricman, Łukasz ; Abdulmughni, Ammar ; Brill, Elisa ; Zapp, Josef ; Pleiss, Juergen ; Bernhardt, Rita ; Thunnissen, Andy‐Mark W. H.</creator><creatorcontrib>Jóźwik, Ilona K. ; Kiss, Flora M. ; Gricman, Łukasz ; Abdulmughni, Ammar ; Brill, Elisa ; Zapp, Josef ; Pleiss, Juergen ; Bernhardt, Rita ; Thunnissen, Andy‐Mark W. H.</creatorcontrib><description>Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6. Comprehensive functional and structural characterization of the steroid‐specific P450 monooxygenase CYP109E1. The bacterial enzyme converts testosterone to 16β‐hydroxytestosterone with high regio‐ and stereoselectivity. Open and closed crystal structures were determined, related to substrate‐free and steroid‐bound states. Our data, combined with results from MD simulations and site‐directed mutagenesis, provide insights explaining CYP109E1 activity, substrate specificity, and regio/stereoselectivity.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13911</identifier><identifier>PMID: 27686671</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino Acid Sequence ; Bacillus megaterium ; Bacillus megaterium - enzymology ; Bacillus megaterium - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Binding Sites - genetics ; Catalytic Domain ; Corticosterone - chemistry ; Corticosterone - metabolism ; crystallography ; Crystallography, X-Ray ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - classification ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P450 ; Enzymes ; Heme - chemistry ; Heme - metabolism ; Molecular Dynamics Simulation ; Molecular Structure ; Original ; Oxidation ; Oxidation-Reduction ; Pharmacology ; Protein Binding ; Protein Domains ; Sequence Homology, Amino Acid ; steroid ; Steroids ; Steroids - chemistry ; Steroids - metabolism ; structure‐function ; Substrate Specificity ; testosterone ; Testosterone - chemistry ; Testosterone - metabolism</subject><ispartof>The FEBS journal, 2016-11, Vol.283 (22), p.4128-4148</ispartof><rights>2016 The Authors. The Journal published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2016 The Authors. The FEBS Journal published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>Copyright © 2016 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.13911$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.13911$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27926,27927,45576,45577,46411,46835</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27686671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jóźwik, Ilona K.</creatorcontrib><creatorcontrib>Kiss, Flora M.</creatorcontrib><creatorcontrib>Gricman, Łukasz</creatorcontrib><creatorcontrib>Abdulmughni, Ammar</creatorcontrib><creatorcontrib>Brill, Elisa</creatorcontrib><creatorcontrib>Zapp, Josef</creatorcontrib><creatorcontrib>Pleiss, Juergen</creatorcontrib><creatorcontrib>Bernhardt, Rita</creatorcontrib><creatorcontrib>Thunnissen, Andy‐Mark W. H.</creatorcontrib><title>Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6. Comprehensive functional and structural characterization of the steroid‐specific P450 monooxygenase CYP109E1. The bacterial enzyme converts testosterone to 16β‐hydroxytestosterone with high regio‐ and stereoselectivity. Open and closed crystal structures were determined, related to substrate‐free and steroid‐bound states. Our data, combined with results from MD simulations and site‐directed mutagenesis, provide insights explaining CYP109E1 activity, substrate specificity, and regio/stereoselectivity.</description><subject>Amino Acid Sequence</subject><subject>Bacillus megaterium</subject><subject>Bacillus megaterium - enzymology</subject><subject>Bacillus megaterium - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Binding Sites - genetics</subject><subject>Catalytic Domain</subject><subject>Corticosterone - chemistry</subject><subject>Corticosterone - metabolism</subject><subject>crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - classification</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P450</subject><subject>Enzymes</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Original</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pharmacology</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Sequence Homology, Amino Acid</subject><subject>steroid</subject><subject>Steroids</subject><subject>Steroids - chemistry</subject><subject>Steroids - metabolism</subject><subject>structure‐function</subject><subject>Substrate Specificity</subject><subject>testosterone</subject><subject>Testosterone - chemistry</subject><subject>Testosterone - metabolism</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNpdkdFLHDEQxkOpVGv70j9AAn3x5TSTZJPsi6DHWQXBg7OgTyGbZO9y7G7sZrft_feNpx7VeZlh5sfHfHwIfQNyArlOa1-lE2AlwAd0AJLTCReF-rib-f0--pzSmhBW8LL8hPapFEoICQdovRj60Q5jbxpcmRQSjjVOg-9jcLgKnQvdEpvO4fg3ODOE2OFqg4eVx3YzRLvqY-vxnBcETx_mQMoZ4Drv8IWxoWnGhFu_NFkujO0XtFebJvmvL_0Q_byc3U2vJje3P66n5zeTNZcAE2UkoWXN6poY6wpJbVllb7WhIKFSilEniLCkUgao57QAxkBR6ayjAhSwQ3T2rPs4Vq131ndDdqcf-9CafqOjCfrtpQsrvYy_dVaiZCtw_CLQx1-jT4NuQ7K-aUzn45g0qIJIWQhWZPT7O3Qdx77L9jLFuZIgmcjU0f8f7V55jSED8Az8CY3f7O5A9FPA-ilgvQ1YX84uFtuJ_QMJKpfO</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Jóźwik, Ilona K.</creator><creator>Kiss, Flora M.</creator><creator>Gricman, Łukasz</creator><creator>Abdulmughni, Ammar</creator><creator>Brill, Elisa</creator><creator>Zapp, Josef</creator><creator>Pleiss, Juergen</creator><creator>Bernhardt, Rita</creator><creator>Thunnissen, Andy‐Mark W. H.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201611</creationdate><title>Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium</title><author>Jóźwik, Ilona K. ; Kiss, Flora M. ; Gricman, Łukasz ; Abdulmughni, Ammar ; Brill, Elisa ; Zapp, Josef ; Pleiss, Juergen ; Bernhardt, Rita ; Thunnissen, Andy‐Mark W. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4711-8a7029f3ff0acd572c9b391fa2171b8832d606c0b8a12e4251331827dcd261813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Bacillus megaterium</topic><topic>Bacillus megaterium - enzymology</topic><topic>Bacillus megaterium - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Binding Sites - genetics</topic><topic>Catalytic Domain</topic><topic>Corticosterone - chemistry</topic><topic>Corticosterone - metabolism</topic><topic>crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - classification</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P450</topic><topic>Enzymes</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Original</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pharmacology</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Sequence Homology, Amino Acid</topic><topic>steroid</topic><topic>Steroids</topic><topic>Steroids - chemistry</topic><topic>Steroids - metabolism</topic><topic>structure‐function</topic><topic>Substrate Specificity</topic><topic>testosterone</topic><topic>Testosterone - chemistry</topic><topic>Testosterone - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jóźwik, Ilona K.</creatorcontrib><creatorcontrib>Kiss, Flora M.</creatorcontrib><creatorcontrib>Gricman, Łukasz</creatorcontrib><creatorcontrib>Abdulmughni, Ammar</creatorcontrib><creatorcontrib>Brill, Elisa</creatorcontrib><creatorcontrib>Zapp, Josef</creatorcontrib><creatorcontrib>Pleiss, Juergen</creatorcontrib><creatorcontrib>Bernhardt, Rita</creatorcontrib><creatorcontrib>Thunnissen, Andy‐Mark W. H.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jóźwik, Ilona K.</au><au>Kiss, Flora M.</au><au>Gricman, Łukasz</au><au>Abdulmughni, Ammar</au><au>Brill, Elisa</au><au>Zapp, Josef</au><au>Pleiss, Juergen</au><au>Bernhardt, Rita</au><au>Thunnissen, Andy‐Mark W. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2016-11</date><risdate>2016</risdate><volume>283</volume><issue>22</issue><spage>4128</spage><epage>4148</epage><pages>4128-4148</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6. Comprehensive functional and structural characterization of the steroid‐specific P450 monooxygenase CYP109E1. The bacterial enzyme converts testosterone to 16β‐hydroxytestosterone with high regio‐ and stereoselectivity. Open and closed crystal structures were determined, related to substrate‐free and steroid‐bound states. Our data, combined with results from MD simulations and site‐directed mutagenesis, provide insights explaining CYP109E1 activity, substrate specificity, and regio/stereoselectivity.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27686671</pmid><doi>10.1111/febs.13911</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2016-11, Vol.283 (22), p.4128-4148
issn 1742-464X
1742-4658
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5132081
source MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacillus megaterium
Bacillus megaterium - enzymology
Bacillus megaterium - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Binding Sites - genetics
Catalytic Domain
Corticosterone - chemistry
Corticosterone - metabolism
crystallography
Crystallography, X-Ray
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - classification
Cytochrome P-450 Enzyme System - metabolism
cytochrome P450
Enzymes
Heme - chemistry
Heme - metabolism
Molecular Dynamics Simulation
Molecular Structure
Original
Oxidation
Oxidation-Reduction
Pharmacology
Protein Binding
Protein Domains
Sequence Homology, Amino Acid
steroid
Steroids
Steroids - chemistry
Steroids - metabolism
structure‐function
Substrate Specificity
testosterone
Testosterone - chemistry
Testosterone - metabolism
title Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20steroid%20binding%20and%20oxidation%20by%20the%20cytochrome%20P450%20CYP109E1%20from%20Bacillus%20megaterium&rft.jtitle=The%20FEBS%20journal&rft.au=J%C3%B3%C5%BAwik,%20Ilona%20K.&rft.date=2016-11&rft.volume=283&rft.issue=22&rft.spage=4128&rft.epage=4148&rft.pages=4128-4148&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13911&rft_dat=%3Cproquest_pubme%3E4266276681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844871736&rft_id=info:pmid/27686671&rfr_iscdi=true