Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae

Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporina product of the Cercospora species. While the cercosporin biosynthetic gene cluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-03, Vol.138 (12), p.4219-4228
Hauptverfasser: Newman, Adam G, Townsend, Craig A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4228
container_issue 12
container_start_page 4219
container_title Journal of the American Chemical Society
container_volume 138
creator Newman, Adam G
Townsend, Craig A
description Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporina product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae , little is known of the metabolite’s biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct productan observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.
doi_str_mv 10.1021/jacs.6b00633
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5129747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812883295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-2901b612d9df3b85d020efe4485607d1e5d83fb702356832df6093e5e676ed7a3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS1ERZfCjTPykQMp_kjs5IJEVxSQWrUHOFsTZ7LrVdZebAe0_PV426UFiZPlmd-8Z88j5BVn55wJ_m4DNp2rnjEl5ROy4I1gVcOFekoWjDFR6VbJU_I8pU251qLlz8ipUJ1sa80WZL4OE9p5gkiXa4hgM0b3C7ILnoaR5jXSJUYb0i5E5-mFC2nvSzU7S28hr3_Cnpb6gbuc_QomejuBz3e9sEL_OA3UOxuyAw_4gpyMMCV8eTzPyLfLj1-Xn6urm09flh-uKqi5zpXoGO8VF0M3jLJvm4EJhiPWddsopgeOzdDKsddMyEa1UgyjYp3EBpVWOGiQZ-T9ve5u7rc4WPQ5wmR20W0h7k0AZ_7teLc2q_DDlAV2utZF4M1RIIbvM6Zsti5ZnMofMczJ8JaLtjh3TUHf3qM2hpQijg82nJlDUuaQlDkmVfDXfz_tAf4TzaP1YWoT5ujLpv6v9RvlxZ82</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812883295</pqid></control><display><type>article</type><title>Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae</title><source>MEDLINE</source><source>ACS Publications</source><creator>Newman, Adam G ; Townsend, Craig A</creator><creatorcontrib>Newman, Adam G ; Townsend, Craig A</creatorcontrib><description>Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporina product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae , little is known of the metabolite’s biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct productan observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b00633</identifier><identifier>PMID: 26938470</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ascomycota - genetics ; Ascomycota - metabolism ; Biosynthetic Pathways - genetics ; Molecular Structure ; Multigene Family ; Naphthoquinones - chemistry ; Perylene - analogs &amp; derivatives ; Perylene - chemistry ; Perylene - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4219-4228</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-2901b612d9df3b85d020efe4485607d1e5d83fb702356832df6093e5e676ed7a3</citedby><cites>FETCH-LOGICAL-a417t-2901b612d9df3b85d020efe4485607d1e5d83fb702356832df6093e5e676ed7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b00633$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b00633$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26938470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newman, Adam G</creatorcontrib><creatorcontrib>Townsend, Craig A</creatorcontrib><title>Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporina product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae , little is known of the metabolite’s biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct productan observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.</description><subject>Ascomycota - genetics</subject><subject>Ascomycota - metabolism</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Molecular Structure</subject><subject>Multigene Family</subject><subject>Naphthoquinones - chemistry</subject><subject>Perylene - analogs &amp; derivatives</subject><subject>Perylene - chemistry</subject><subject>Perylene - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxS1ERZfCjTPykQMp_kjs5IJEVxSQWrUHOFsTZ7LrVdZebAe0_PV426UFiZPlmd-8Z88j5BVn55wJ_m4DNp2rnjEl5ROy4I1gVcOFekoWjDFR6VbJU_I8pU251qLlz8ipUJ1sa80WZL4OE9p5gkiXa4hgM0b3C7ILnoaR5jXSJUYb0i5E5-mFC2nvSzU7S28hr3_Cnpb6gbuc_QomejuBz3e9sEL_OA3UOxuyAw_4gpyMMCV8eTzPyLfLj1-Xn6urm09flh-uKqi5zpXoGO8VF0M3jLJvm4EJhiPWddsopgeOzdDKsddMyEa1UgyjYp3EBpVWOGiQZ-T9ve5u7rc4WPQ5wmR20W0h7k0AZ_7teLc2q_DDlAV2utZF4M1RIIbvM6Zsti5ZnMofMczJ8JaLtjh3TUHf3qM2hpQijg82nJlDUuaQlDkmVfDXfz_tAf4TzaP1YWoT5ujLpv6v9RvlxZ82</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Newman, Adam G</creator><creator>Townsend, Craig A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160330</creationdate><title>Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae</title><author>Newman, Adam G ; Townsend, Craig A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-2901b612d9df3b85d020efe4485607d1e5d83fb702356832df6093e5e676ed7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ascomycota - genetics</topic><topic>Ascomycota - metabolism</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Molecular Structure</topic><topic>Multigene Family</topic><topic>Naphthoquinones - chemistry</topic><topic>Perylene - analogs &amp; derivatives</topic><topic>Perylene - chemistry</topic><topic>Perylene - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, Adam G</creatorcontrib><creatorcontrib>Townsend, Craig A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, Adam G</au><au>Townsend, Craig A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>138</volume><issue>12</issue><spage>4219</spage><epage>4228</epage><pages>4219-4228</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporina product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae , little is known of the metabolite’s biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct productan observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26938470</pmid><doi>10.1021/jacs.6b00633</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4219-4228
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5129747
source MEDLINE; ACS Publications
subjects Ascomycota - genetics
Ascomycota - metabolism
Biosynthetic Pathways - genetics
Molecular Structure
Multigene Family
Naphthoquinones - chemistry
Perylene - analogs & derivatives
Perylene - chemistry
Perylene - metabolism
title Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Characterization%20of%20the%20Cercosporin%20Biosynthetic%20Pathway%20in%20the%20Fungal%20Plant%20Pathogen%20Cercospora%20nicotianae&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Newman,%20Adam%20G&rft.date=2016-03-30&rft.volume=138&rft.issue=12&rft.spage=4219&rft.epage=4228&rft.pages=4219-4228&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b00633&rft_dat=%3Cproquest_pubme%3E1812883295%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812883295&rft_id=info:pmid/26938470&rfr_iscdi=true