Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism
Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of mo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-11, Vol.113 (47), p.E7483-E7489 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E7489 |
---|---|
container_issue | 47 |
container_start_page | E7483 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Britto, Mishan Goulet, Adeline Rizvi, Syeda von Loeffelholz, Ottilie Moores, Carolyn A. Cross, Robert A. |
description | Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5. |
doi_str_mv | 10.1073/pnas.1611581113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5127321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472607</jstor_id><sourcerecordid>26472607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-e33cbedbeb5d33a6a668f870c7359d1ed1bb0ee477aa73d3bf42c3f065d5bfd13</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotvCmRMoEpdySOvxZ3KpVFVAK63UAyBxs2zHabxN4sVOisqvx9H2A3rqydK8zzy2xoPQO8BHgCU93o46HYEA4BUA0BdoBbiGUrAav0QrjIksK0bYHtpPaYMxrnmFX6M9IivKCIgV-vnNdv5PSNraTscw3FqXim0YjCuu_eiSH0tepN9-sl0OGh-dnXwYizknV4Uu0uSit4Xpg71eKoPLntGn4Q161eo-ubd35wH68eXz97Pzcn359eLsdF1aDngqHaXWuMY4wxtKtdBCVG0lsZWU1w24BozBzjEptZa0oaZlxNIWC95w0zZAD9DJzrudzeAa68Yp6l5tox90vFVBe_V_MvpOXYUbxYFIShbBp52ge9J2frpWSw1TzmsmxM3CHt5dFsOv2aVJDT5Z1_d6dGFOCiqRlYBx9QyU1kAwYSSjH5-gmzDHMU8tUywDgtFFeLyjbAwpRdc-PBawWpZBLcugHpchd3z4dzQP_P3vZ-D9DtikKcTHXDBJRDb-BcTMuwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844236438</pqid></control><display><type>article</type><title>Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Britto, Mishan ; Goulet, Adeline ; Rizvi, Syeda ; von Loeffelholz, Ottilie ; Moores, Carolyn A. ; Cross, Robert A.</creator><creatorcontrib>Britto, Mishan ; Goulet, Adeline ; Rizvi, Syeda ; von Loeffelholz, Ottilie ; Moores, Carolyn A. ; Cross, Robert A.</creatorcontrib><description>Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1611581113</identifier><identifier>PMID: 27834216</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding Sites ; Biological Sciences ; Chromosome Segregation ; Kinesin - chemistry ; Kinesin - metabolism ; Life Sciences ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Mitosis ; PNAS Plus ; Protein Domains ; Proteins ; Schizosaccharomyces - chemistry ; Schizosaccharomyces - cytology ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - chemistry ; Schizosaccharomyces pombe Proteins - metabolism ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (47), p.E7483-E7489</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 22, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-e33cbedbeb5d33a6a668f870c7359d1ed1bb0ee477aa73d3bf42c3f065d5bfd13</citedby><cites>FETCH-LOGICAL-c510t-e33cbedbeb5d33a6a668f870c7359d1ed1bb0ee477aa73d3bf42c3f065d5bfd13</cites><orcidid>0000-0002-0004-7832 ; 0000-0002-5971-9488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472607$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472607$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27834216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03559466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Britto, Mishan</creatorcontrib><creatorcontrib>Goulet, Adeline</creatorcontrib><creatorcontrib>Rizvi, Syeda</creatorcontrib><creatorcontrib>von Loeffelholz, Ottilie</creatorcontrib><creatorcontrib>Moores, Carolyn A.</creatorcontrib><creatorcontrib>Cross, Robert A.</creatorcontrib><title>Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5.</description><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Chromosome Segregation</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - metabolism</subject><subject>Life Sciences</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>PNAS Plus</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Schizosaccharomyces - chemistry</subject><subject>Schizosaccharomyces - cytology</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EotvCmRMoEpdySOvxZ3KpVFVAK63UAyBxs2zHabxN4sVOisqvx9H2A3rqydK8zzy2xoPQO8BHgCU93o46HYEA4BUA0BdoBbiGUrAav0QrjIksK0bYHtpPaYMxrnmFX6M9IivKCIgV-vnNdv5PSNraTscw3FqXim0YjCuu_eiSH0tepN9-sl0OGh-dnXwYizknV4Uu0uSit4Xpg71eKoPLntGn4Q161eo-ubd35wH68eXz97Pzcn359eLsdF1aDngqHaXWuMY4wxtKtdBCVG0lsZWU1w24BozBzjEptZa0oaZlxNIWC95w0zZAD9DJzrudzeAa68Yp6l5tox90vFVBe_V_MvpOXYUbxYFIShbBp52ge9J2frpWSw1TzmsmxM3CHt5dFsOv2aVJDT5Z1_d6dGFOCiqRlYBx9QyU1kAwYSSjH5-gmzDHMU8tUywDgtFFeLyjbAwpRdc-PBawWpZBLcugHpchd3z4dzQP_P3vZ-D9DtikKcTHXDBJRDb-BcTMuwA</recordid><startdate>20161122</startdate><enddate>20161122</enddate><creator>Britto, Mishan</creator><creator>Goulet, Adeline</creator><creator>Rizvi, Syeda</creator><creator>von Loeffelholz, Ottilie</creator><creator>Moores, Carolyn A.</creator><creator>Cross, Robert A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0004-7832</orcidid><orcidid>https://orcid.org/0000-0002-5971-9488</orcidid></search><sort><creationdate>20161122</creationdate><title>Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism</title><author>Britto, Mishan ; Goulet, Adeline ; Rizvi, Syeda ; von Loeffelholz, Ottilie ; Moores, Carolyn A. ; Cross, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-e33cbedbeb5d33a6a668f870c7359d1ed1bb0ee477aa73d3bf42c3f065d5bfd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Chromosome Segregation</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - metabolism</topic><topic>Life Sciences</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>PNAS Plus</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Schizosaccharomyces - chemistry</topic><topic>Schizosaccharomyces - cytology</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Britto, Mishan</creatorcontrib><creatorcontrib>Goulet, Adeline</creatorcontrib><creatorcontrib>Rizvi, Syeda</creatorcontrib><creatorcontrib>von Loeffelholz, Ottilie</creatorcontrib><creatorcontrib>Moores, Carolyn A.</creatorcontrib><creatorcontrib>Cross, Robert A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Britto, Mishan</au><au>Goulet, Adeline</au><au>Rizvi, Syeda</au><au>von Loeffelholz, Ottilie</au><au>Moores, Carolyn A.</au><au>Cross, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-11-22</date><risdate>2016</risdate><volume>113</volume><issue>47</issue><spage>E7483</spage><epage>E7489</epage><pages>E7483-E7489</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27834216</pmid><doi>10.1073/pnas.1611581113</doi><orcidid>https://orcid.org/0000-0002-0004-7832</orcidid><orcidid>https://orcid.org/0000-0002-5971-9488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (47), p.E7483-E7489 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5127321 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Binding Sites Biological Sciences Chromosome Segregation Kinesin - chemistry Kinesin - metabolism Life Sciences Microtubule-Associated Proteins - metabolism Microtubules - metabolism Mitosis PNAS Plus Protein Domains Proteins Schizosaccharomyces - chemistry Schizosaccharomyces - cytology Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - chemistry Schizosaccharomyces pombe Proteins - metabolism Yeast Yeasts |
title | Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schizosaccharomyces%20pombe%20kinesin-5%20switches%20direction%20using%20a%20steric%20blocking%20mechanism&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Britto,%20Mishan&rft.date=2016-11-22&rft.volume=113&rft.issue=47&rft.spage=E7483&rft.epage=E7489&rft.pages=E7483-E7489&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1611581113&rft_dat=%3Cjstor_pubme%3E26472607%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844236438&rft_id=info:pmid/27834216&rft_jstor_id=26472607&rfr_iscdi=true |