Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs

Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2015-03, Vol.17 (3), p.241-250
Hauptverfasser: Rodríguez-Fraticelli, Alejo E., Bagwell, Jennifer, Bosch-Fortea, Minerva, Boncompain, Gaelle, Reglero-Real, Natalia, García-León, Maria J., Andrés, Germán, Toribio, Maria L., Alonso, Miguel A., Millán, Jaime, Perez, Franck, Bagnat, Michel, Martín-Belmonte, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 241
container_title Nature cell biology
container_volume 17
creator Rodríguez-Fraticelli, Alejo E.
Bagwell, Jennifer
Bosch-Fortea, Minerva
Boncompain, Gaelle
Reglero-Real, Natalia
García-León, Maria J.
Andrés, Germán
Toribio, Maria L.
Alonso, Miguel A.
Millán, Jaime
Perez, Franck
Bagnat, Michel
Martín-Belmonte, Fernando
description Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the apical availability of endosomal SNARE receptors for epithelial morphogenesis through the developmental upregulation of plasmolipin ( pllp ) in a highly endocytic segment of the zebrafish posterior midgut. The protein PLLP (Pllp in fish) recruits the clathrin adaptor EpsinR to sort the SNARE machinery of the endolysosomal pathway into the subapical compartment, which is a switch for polarized endocytosis. Furthermore, PLLP expression induces apical Crumbs internalization and the activation of the Notch signalling pathway, both crucial steps in the acquisition of cell polarity and differentiation of epithelial cells. We thus postulate that differential apical endosomal SNARE sorting is a mechanism that regulates epithelial patterning. Bagnat, Martín-Belmonte and colleagues reveal that plasmolipin (PLLP) is upregulated in the zebrafish midgut during development and controls epithelial patterning by promoting polarized endocytosis.
doi_str_mv 10.1038/ncb3106
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5126975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A404275867</galeid><sourcerecordid>A404275867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-307bf1c419e7aea405db70a5c2053259e40cdb852637220f784152c1f1ffddbf3</originalsourceid><addsrcrecordid>eNqFkt1qFTEQxxdRbK3iG8iCF-rFqZNsPnZvhFK_CgXBj-uQzU62qXuSNckW-zY-i09mDj22PUWQXCTM_OZP5j9TVU8JHBJo2tfe9A0Bca_aJ0yKFROyu795C76STUf3qkcpnQMQxkA-rPYolyBow_er72_xAqcwr9FnPdURx2XS2QVfB1vr2ZkSRD8Ec5lDcqk2wecYplTj7PIZTq7kZ50zRu_8WDtfX2DM2Eedsc5LX9Ti718hjtqnx9UDq6eET7b3QfXt_buvxx9Xp58-nBwfna6MaCCvGpC9JYaRDqVGzYAPvQTNDQXeUN4hAzP0LaeikZSClS0jnBpiibXD0NvmoHpzpTsv_RoHU1qLelJzdGsdL1XQTu1mvDtTY7hQnFDRSV4EXm4FYvixYMpq7ZLBadIew5IUkcBBFHPh_6gQRBBCuw36_A56HpboixOF4m0rAVp2Q416QuW8DeWLZiOqjhgwKnkrZKEO_0GVM-DalRmhdSW-U_Bqp2AzR_yZR72kpE6-fN5lX1yxJoaUItpr6wiozbqp7boV8tltp6-5v_t1Y08qKT9ivNXzHa0_zgfeHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658870084</pqid></control><display><type>article</type><title>Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Rodríguez-Fraticelli, Alejo E. ; Bagwell, Jennifer ; Bosch-Fortea, Minerva ; Boncompain, Gaelle ; Reglero-Real, Natalia ; García-León, Maria J. ; Andrés, Germán ; Toribio, Maria L. ; Alonso, Miguel A. ; Millán, Jaime ; Perez, Franck ; Bagnat, Michel ; Martín-Belmonte, Fernando</creator><creatorcontrib>Rodríguez-Fraticelli, Alejo E. ; Bagwell, Jennifer ; Bosch-Fortea, Minerva ; Boncompain, Gaelle ; Reglero-Real, Natalia ; García-León, Maria J. ; Andrés, Germán ; Toribio, Maria L. ; Alonso, Miguel A. ; Millán, Jaime ; Perez, Franck ; Bagnat, Michel ; Martín-Belmonte, Fernando</creatorcontrib><description>Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the apical availability of endosomal SNARE receptors for epithelial morphogenesis through the developmental upregulation of plasmolipin ( pllp ) in a highly endocytic segment of the zebrafish posterior midgut. The protein PLLP (Pllp in fish) recruits the clathrin adaptor EpsinR to sort the SNARE machinery of the endolysosomal pathway into the subapical compartment, which is a switch for polarized endocytosis. Furthermore, PLLP expression induces apical Crumbs internalization and the activation of the Notch signalling pathway, both crucial steps in the acquisition of cell polarity and differentiation of epithelial cells. We thus postulate that differential apical endosomal SNARE sorting is a mechanism that regulates epithelial patterning. Bagnat, Martín-Belmonte and colleagues reveal that plasmolipin (PLLP) is upregulated in the zebrafish midgut during development and controls epithelial patterning by promoting polarized endocytosis.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3106</identifier><identifier>PMID: 25706235</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/109 ; 13/89 ; 13/95 ; 14/19 ; 14/28 ; 14/34 ; 14/69 ; 38 ; 38/39 ; 38/77 ; 38/88 ; 42 ; 45 ; 59 ; 631/136 ; 631/80/313/1461 ; 631/80/313/2104 ; 631/80/85/2361 ; 64/116 ; 64/60 ; 82/51 ; 96 ; 96/106 ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - metabolism ; Animals ; Artificial chromosomes ; Biology ; Cancer Research ; Cell Biology ; Cell Differentiation ; Cell Line ; Cell Polarity ; Cell Proliferation ; Cell research ; Cellular proteins ; Danio rerio ; Developmental Biology ; Embryo, Nonmammalian ; Endocytosis ; Endosomes - metabolism ; Endosomes - ultrastructure ; Epithelial Cells - metabolism ; Epithelial Cells - ultrastructure ; Epithelium - metabolism ; Epithelium - ultrastructure ; Gene Expression Regulation, Developmental ; Genes ; Kidney Tubules - metabolism ; Kidney Tubules - ultrastructure ; Life Sciences ; Lysosomes - metabolism ; Lysosomes - ultrastructure ; Mice ; Microscopy ; Morphogenesis ; Myelin and Lymphocyte-Associated Proteolipid Proteins - genetics ; Myelin and Lymphocyte-Associated Proteolipid Proteins - metabolism ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Properties ; Proteins ; Receptors, Notch - genetics ; Receptors, Notch - metabolism ; Signal Transduction ; SNARE Proteins - genetics ; SNARE Proteins - metabolism ; Stem Cells ; Vertebrates ; Zebrafish</subject><ispartof>Nature cell biology, 2015-03, Vol.17 (3), p.241-250</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-307bf1c419e7aea405db70a5c2053259e40cdb852637220f784152c1f1ffddbf3</citedby><cites>FETCH-LOGICAL-c630t-307bf1c419e7aea405db70a5c2053259e40cdb852637220f784152c1f1ffddbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Fraticelli, Alejo E.</creatorcontrib><creatorcontrib>Bagwell, Jennifer</creatorcontrib><creatorcontrib>Bosch-Fortea, Minerva</creatorcontrib><creatorcontrib>Boncompain, Gaelle</creatorcontrib><creatorcontrib>Reglero-Real, Natalia</creatorcontrib><creatorcontrib>García-León, Maria J.</creatorcontrib><creatorcontrib>Andrés, Germán</creatorcontrib><creatorcontrib>Toribio, Maria L.</creatorcontrib><creatorcontrib>Alonso, Miguel A.</creatorcontrib><creatorcontrib>Millán, Jaime</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Bagnat, Michel</creatorcontrib><creatorcontrib>Martín-Belmonte, Fernando</creatorcontrib><title>Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the apical availability of endosomal SNARE receptors for epithelial morphogenesis through the developmental upregulation of plasmolipin ( pllp ) in a highly endocytic segment of the zebrafish posterior midgut. The protein PLLP (Pllp in fish) recruits the clathrin adaptor EpsinR to sort the SNARE machinery of the endolysosomal pathway into the subapical compartment, which is a switch for polarized endocytosis. Furthermore, PLLP expression induces apical Crumbs internalization and the activation of the Notch signalling pathway, both crucial steps in the acquisition of cell polarity and differentiation of epithelial cells. We thus postulate that differential apical endosomal SNARE sorting is a mechanism that regulates epithelial patterning. Bagnat, Martín-Belmonte and colleagues reveal that plasmolipin (PLLP) is upregulated in the zebrafish midgut during development and controls epithelial patterning by promoting polarized endocytosis.</description><subject>13/1</subject><subject>13/109</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/69</subject><subject>38</subject><subject>38/39</subject><subject>38/77</subject><subject>38/88</subject><subject>42</subject><subject>45</subject><subject>59</subject><subject>631/136</subject><subject>631/80/313/1461</subject><subject>631/80/313/2104</subject><subject>631/80/85/2361</subject><subject>64/116</subject><subject>64/60</subject><subject>82/51</subject><subject>96</subject><subject>96/106</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>Animals</subject><subject>Artificial chromosomes</subject><subject>Biology</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Polarity</subject><subject>Cell Proliferation</subject><subject>Cell research</subject><subject>Cellular proteins</subject><subject>Danio rerio</subject><subject>Developmental Biology</subject><subject>Embryo, Nonmammalian</subject><subject>Endocytosis</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - ultrastructure</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - ultrastructure</subject><subject>Epithelium - metabolism</subject><subject>Epithelium - ultrastructure</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Kidney Tubules - metabolism</subject><subject>Kidney Tubules - ultrastructure</subject><subject>Life Sciences</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - ultrastructure</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Morphogenesis</subject><subject>Myelin and Lymphocyte-Associated Proteolipid Proteins - genetics</subject><subject>Myelin and Lymphocyte-Associated Proteolipid Proteins - metabolism</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Properties</subject><subject>Proteins</subject><subject>Receptors, Notch - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>Signal Transduction</subject><subject>SNARE Proteins - genetics</subject><subject>SNARE Proteins - metabolism</subject><subject>Stem Cells</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkt1qFTEQxxdRbK3iG8iCF-rFqZNsPnZvhFK_CgXBj-uQzU62qXuSNckW-zY-i09mDj22PUWQXCTM_OZP5j9TVU8JHBJo2tfe9A0Bca_aJ0yKFROyu795C76STUf3qkcpnQMQxkA-rPYolyBow_er72_xAqcwr9FnPdURx2XS2QVfB1vr2ZkSRD8Ec5lDcqk2wecYplTj7PIZTq7kZ50zRu_8WDtfX2DM2Eedsc5LX9Ti718hjtqnx9UDq6eET7b3QfXt_buvxx9Xp58-nBwfna6MaCCvGpC9JYaRDqVGzYAPvQTNDQXeUN4hAzP0LaeikZSClS0jnBpiibXD0NvmoHpzpTsv_RoHU1qLelJzdGsdL1XQTu1mvDtTY7hQnFDRSV4EXm4FYvixYMpq7ZLBadIew5IUkcBBFHPh_6gQRBBCuw36_A56HpboixOF4m0rAVp2Q416QuW8DeWLZiOqjhgwKnkrZKEO_0GVM-DalRmhdSW-U_Bqp2AzR_yZR72kpE6-fN5lX1yxJoaUItpr6wiozbqp7boV8tltp6-5v_t1Y08qKT9ivNXzHa0_zgfeHg</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Rodríguez-Fraticelli, Alejo E.</creator><creator>Bagwell, Jennifer</creator><creator>Bosch-Fortea, Minerva</creator><creator>Boncompain, Gaelle</creator><creator>Reglero-Real, Natalia</creator><creator>García-León, Maria J.</creator><creator>Andrés, Germán</creator><creator>Toribio, Maria L.</creator><creator>Alonso, Miguel A.</creator><creator>Millán, Jaime</creator><creator>Perez, Franck</creator><creator>Bagnat, Michel</creator><creator>Martín-Belmonte, Fernando</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20150301</creationdate><title>Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs</title><author>Rodríguez-Fraticelli, Alejo E. ; Bagwell, Jennifer ; Bosch-Fortea, Minerva ; Boncompain, Gaelle ; Reglero-Real, Natalia ; García-León, Maria J. ; Andrés, Germán ; Toribio, Maria L. ; Alonso, Miguel A. ; Millán, Jaime ; Perez, Franck ; Bagnat, Michel ; Martín-Belmonte, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-307bf1c419e7aea405db70a5c2053259e40cdb852637220f784152c1f1ffddbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/1</topic><topic>13/109</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/69</topic><topic>38</topic><topic>38/39</topic><topic>38/77</topic><topic>38/88</topic><topic>42</topic><topic>45</topic><topic>59</topic><topic>631/136</topic><topic>631/80/313/1461</topic><topic>631/80/313/2104</topic><topic>631/80/85/2361</topic><topic>64/116</topic><topic>64/60</topic><topic>82/51</topic><topic>96</topic><topic>96/106</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>Animals</topic><topic>Artificial chromosomes</topic><topic>Biology</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Polarity</topic><topic>Cell Proliferation</topic><topic>Cell research</topic><topic>Cellular proteins</topic><topic>Danio rerio</topic><topic>Developmental Biology</topic><topic>Embryo, Nonmammalian</topic><topic>Endocytosis</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - ultrastructure</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - ultrastructure</topic><topic>Epithelium - metabolism</topic><topic>Epithelium - ultrastructure</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Kidney Tubules - metabolism</topic><topic>Kidney Tubules - ultrastructure</topic><topic>Life Sciences</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - ultrastructure</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Morphogenesis</topic><topic>Myelin and Lymphocyte-Associated Proteolipid Proteins - genetics</topic><topic>Myelin and Lymphocyte-Associated Proteolipid Proteins - metabolism</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Properties</topic><topic>Proteins</topic><topic>Receptors, Notch - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>Signal Transduction</topic><topic>SNARE Proteins - genetics</topic><topic>SNARE Proteins - metabolism</topic><topic>Stem Cells</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Fraticelli, Alejo E.</creatorcontrib><creatorcontrib>Bagwell, Jennifer</creatorcontrib><creatorcontrib>Bosch-Fortea, Minerva</creatorcontrib><creatorcontrib>Boncompain, Gaelle</creatorcontrib><creatorcontrib>Reglero-Real, Natalia</creatorcontrib><creatorcontrib>García-León, Maria J.</creatorcontrib><creatorcontrib>Andrés, Germán</creatorcontrib><creatorcontrib>Toribio, Maria L.</creatorcontrib><creatorcontrib>Alonso, Miguel A.</creatorcontrib><creatorcontrib>Millán, Jaime</creatorcontrib><creatorcontrib>Perez, Franck</creatorcontrib><creatorcontrib>Bagnat, Michel</creatorcontrib><creatorcontrib>Martín-Belmonte, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Fraticelli, Alejo E.</au><au>Bagwell, Jennifer</au><au>Bosch-Fortea, Minerva</au><au>Boncompain, Gaelle</au><au>Reglero-Real, Natalia</au><au>García-León, Maria J.</au><au>Andrés, Germán</au><au>Toribio, Maria L.</au><au>Alonso, Miguel A.</au><au>Millán, Jaime</au><au>Perez, Franck</au><au>Bagnat, Michel</au><au>Martín-Belmonte, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>17</volume><issue>3</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the apical availability of endosomal SNARE receptors for epithelial morphogenesis through the developmental upregulation of plasmolipin ( pllp ) in a highly endocytic segment of the zebrafish posterior midgut. The protein PLLP (Pllp in fish) recruits the clathrin adaptor EpsinR to sort the SNARE machinery of the endolysosomal pathway into the subapical compartment, which is a switch for polarized endocytosis. Furthermore, PLLP expression induces apical Crumbs internalization and the activation of the Notch signalling pathway, both crucial steps in the acquisition of cell polarity and differentiation of epithelial cells. We thus postulate that differential apical endosomal SNARE sorting is a mechanism that regulates epithelial patterning. Bagnat, Martín-Belmonte and colleagues reveal that plasmolipin (PLLP) is upregulated in the zebrafish midgut during development and controls epithelial patterning by promoting polarized endocytosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25706235</pmid><doi>10.1038/ncb3106</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2015-03, Vol.17 (3), p.241-250
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5126975
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 13/1
13/109
13/89
13/95
14/19
14/28
14/34
14/69
38
38/39
38/77
38/88
42
45
59
631/136
631/80/313/1461
631/80/313/2104
631/80/85/2361
64/116
64/60
82/51
96
96/106
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - metabolism
Animals
Artificial chromosomes
Biology
Cancer Research
Cell Biology
Cell Differentiation
Cell Line
Cell Polarity
Cell Proliferation
Cell research
Cellular proteins
Danio rerio
Developmental Biology
Embryo, Nonmammalian
Endocytosis
Endosomes - metabolism
Endosomes - ultrastructure
Epithelial Cells - metabolism
Epithelial Cells - ultrastructure
Epithelium - metabolism
Epithelium - ultrastructure
Gene Expression Regulation, Developmental
Genes
Kidney Tubules - metabolism
Kidney Tubules - ultrastructure
Life Sciences
Lysosomes - metabolism
Lysosomes - ultrastructure
Mice
Microscopy
Morphogenesis
Myelin and Lymphocyte-Associated Proteolipid Proteins - genetics
Myelin and Lymphocyte-Associated Proteolipid Proteins - metabolism
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Properties
Proteins
Receptors, Notch - genetics
Receptors, Notch - metabolism
Signal Transduction
SNARE Proteins - genetics
SNARE Proteins - metabolism
Stem Cells
Vertebrates
Zebrafish
title Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developmental%20regulation%20of%20apical%20endocytosis%20controls%20epithelial%20patterning%20in%20vertebrate%20tubular%C2%A0organs&rft.jtitle=Nature%20cell%20biology&rft.au=Rodr%C3%ADguez-Fraticelli,%20Alejo%20E.&rft.date=2015-03-01&rft.volume=17&rft.issue=3&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3106&rft_dat=%3Cgale_pubme%3EA404275867%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658870084&rft_id=info:pmid/25706235&rft_galeid=A404275867&rfr_iscdi=true