A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin

Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2016-11, Vol.36 (46), p.11654-11670
Hauptverfasser: Kinghorn, Kerri J, Grönke, Sebastian, Castillo-Quan, Jorge Iván, Woodling, Nathaniel S, Li, Li, Sirka, Ernestas, Gegg, Matthew, Mills, Kevin, Hardy, John, Bjedov, Ivana, Partridge, Linda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11670
container_issue 46
container_start_page 11654
container_title The Journal of neuroscience
container_volume 36
creator Kinghorn, Kerri J
Grönke, Sebastian
Castillo-Quan, Jorge Iván
Woodling, Nathaniel S
Li, Li
Sirka, Ernestas
Gegg, Matthew
Mills, Kevin
Hardy, John
Bjedov, Ivana
Partridge, Linda
description Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD SIGNIFICANCE STATEMENT: We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are required for autophagosome-lysosomal fusion in the autophagy pathway. We show in vivo that autophagy is impaired in dGBA-deficient fly brains. In response, mechanistic target of rapamycin (mTOR) activity is downregulated in dGBA-deficient flies and rapamycin ameliorates the lifespan, locomotor, and oxidative stress phenotypes. dGBA knock-out flies also display an upregulation of the Drosophila ortholog of mammalian TFEB, Mitf, a response that is unable to overcome the autophagy block. Together, our resu
doi_str_mv 10.1523/JNEUROSCI.4527-15.2016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5125225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841134220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ef7cc49b1b6df7888c801747f7c2c21ac5c2bdb7dd9865aa0c5216e0db7d8bd23</originalsourceid><addsrcrecordid>eNqNUtFu0zAUtRCIlcEvTH7kJcV24jh9QarabRSVVeq2Z8txblojxw6xM6m_w5fisFHBG36xde45R_f6HoSuKJlTzvJPX--uH_e7-9VmXnAmMsrnjNDyFZql6iJjBaGv0YwwQbKyEMUFehfCd0KIIFS8RRdMVEklihn6ucTrwQffH41V-JtvwGLf4jsYB-98r-LRaHyrRn2EAa9NABUAr6HzLsRBRQh4ewpJ3ymbLceYfNQhKdbQgo4BK9fgpY0wQIO7h90e35uDU9Yad_hd2wR8MzodjZ_QE95D0GPi1umpetWdtHHv0ZtW2QAfXu5L9Hhz_bD6km13t5vVcpvp9AUxg1ZoXSxqWpdNK6qq0lUathAJZppRpblmdVOLpllUJVeKaM5oCWSCqrph-SX6_Ozbj3UHjQaXJrSyH0ynhpP0ysh_K84c5cE_SU4ZZ4wng48vBoP_MUKIsjNBg7XKgR-DpBUnIp08_w9qQWleMEYStXym6rSnMEB77ogSOWVBnrMgpywkTE5ZSMKrv-c5y_4sP_8Fzg-1Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841134220</pqid></control><display><type>article</type><title>A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kinghorn, Kerri J ; Grönke, Sebastian ; Castillo-Quan, Jorge Iván ; Woodling, Nathaniel S ; Li, Li ; Sirka, Ernestas ; Gegg, Matthew ; Mills, Kevin ; Hardy, John ; Bjedov, Ivana ; Partridge, Linda</creator><creatorcontrib>Kinghorn, Kerri J ; Grönke, Sebastian ; Castillo-Quan, Jorge Iván ; Woodling, Nathaniel S ; Li, Li ; Sirka, Ernestas ; Gegg, Matthew ; Mills, Kevin ; Hardy, John ; Bjedov, Ivana ; Partridge, Linda</creatorcontrib><description>Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD SIGNIFICANCE STATEMENT: We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are required for autophagosome-lysosomal fusion in the autophagy pathway. We show in vivo that autophagy is impaired in dGBA-deficient fly brains. In response, mechanistic target of rapamycin (mTOR) activity is downregulated in dGBA-deficient flies and rapamycin ameliorates the lifespan, locomotor, and oxidative stress phenotypes. dGBA knock-out flies also display an upregulation of the Drosophila ortholog of mammalian TFEB, Mitf, a response that is unable to overcome the autophagy block. Together, our results suggest that rapamycin may have potential benefits in the treatment of GD, as well as PD linked to GBA1 mutations.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4527-15.2016</identifier><identifier>PMID: 27852774</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Animals, Genetically Modified ; Autophagy - drug effects ; Disease Models, Animal ; Drosophila ; Gaucher Disease - metabolism ; Gaucher Disease - pathology ; Gaucher Disease - prevention &amp; control ; Gene Knockout Techniques ; Glucosylceramidase - genetics ; Lysosomes - metabolism ; Signal Transduction - drug effects ; Sirolimus - administration &amp; dosage ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>The Journal of neuroscience, 2016-11, Vol.36 (46), p.11654-11670</ispartof><rights>Copyright © 2016 Kinghorn et al.</rights><rights>Copyright © 2016 Kinghorn et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ef7cc49b1b6df7888c801747f7c2c21ac5c2bdb7dd9865aa0c5216e0db7d8bd23</citedby><cites>FETCH-LOGICAL-c452t-ef7cc49b1b6df7888c801747f7c2c21ac5c2bdb7dd9865aa0c5216e0db7d8bd23</cites><orcidid>0000-0003-2048-4332 ; 0000-0002-1539-5346 ; 0000-0002-0298-3800 ; 0000-0002-6324-2854 ; 0000-0001-8093-0723 ; 0000-0001-8500-5406 ; 0000-0001-9615-0094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125225/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125225/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27852774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinghorn, Kerri J</creatorcontrib><creatorcontrib>Grönke, Sebastian</creatorcontrib><creatorcontrib>Castillo-Quan, Jorge Iván</creatorcontrib><creatorcontrib>Woodling, Nathaniel S</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Sirka, Ernestas</creatorcontrib><creatorcontrib>Gegg, Matthew</creatorcontrib><creatorcontrib>Mills, Kevin</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Bjedov, Ivana</creatorcontrib><creatorcontrib>Partridge, Linda</creatorcontrib><title>A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD SIGNIFICANCE STATEMENT: We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are required for autophagosome-lysosomal fusion in the autophagy pathway. We show in vivo that autophagy is impaired in dGBA-deficient fly brains. In response, mechanistic target of rapamycin (mTOR) activity is downregulated in dGBA-deficient flies and rapamycin ameliorates the lifespan, locomotor, and oxidative stress phenotypes. dGBA knock-out flies also display an upregulation of the Drosophila ortholog of mammalian TFEB, Mitf, a response that is unable to overcome the autophagy block. Together, our results suggest that rapamycin may have potential benefits in the treatment of GD, as well as PD linked to GBA1 mutations.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Autophagy - drug effects</subject><subject>Disease Models, Animal</subject><subject>Drosophila</subject><subject>Gaucher Disease - metabolism</subject><subject>Gaucher Disease - pathology</subject><subject>Gaucher Disease - prevention &amp; control</subject><subject>Gene Knockout Techniques</subject><subject>Glucosylceramidase - genetics</subject><subject>Lysosomes - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Sirolimus - administration &amp; dosage</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUtFu0zAUtRCIlcEvTH7kJcV24jh9QarabRSVVeq2Z8txblojxw6xM6m_w5fisFHBG36xde45R_f6HoSuKJlTzvJPX--uH_e7-9VmXnAmMsrnjNDyFZql6iJjBaGv0YwwQbKyEMUFehfCd0KIIFS8RRdMVEklihn6ucTrwQffH41V-JtvwGLf4jsYB-98r-LRaHyrRn2EAa9NABUAr6HzLsRBRQh4ewpJ3ymbLceYfNQhKdbQgo4BK9fgpY0wQIO7h90e35uDU9Yad_hd2wR8MzodjZ_QE95D0GPi1umpetWdtHHv0ZtW2QAfXu5L9Hhz_bD6km13t5vVcpvp9AUxg1ZoXSxqWpdNK6qq0lUathAJZppRpblmdVOLpllUJVeKaM5oCWSCqrph-SX6_Ozbj3UHjQaXJrSyH0ynhpP0ysh_K84c5cE_SU4ZZ4wng48vBoP_MUKIsjNBg7XKgR-DpBUnIp08_w9qQWleMEYStXym6rSnMEB77ogSOWVBnrMgpywkTE5ZSMKrv-c5y_4sP_8Fzg-1Zg</recordid><startdate>20161116</startdate><enddate>20161116</enddate><creator>Kinghorn, Kerri J</creator><creator>Grönke, Sebastian</creator><creator>Castillo-Quan, Jorge Iván</creator><creator>Woodling, Nathaniel S</creator><creator>Li, Li</creator><creator>Sirka, Ernestas</creator><creator>Gegg, Matthew</creator><creator>Mills, Kevin</creator><creator>Hardy, John</creator><creator>Bjedov, Ivana</creator><creator>Partridge, Linda</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2048-4332</orcidid><orcidid>https://orcid.org/0000-0002-1539-5346</orcidid><orcidid>https://orcid.org/0000-0002-0298-3800</orcidid><orcidid>https://orcid.org/0000-0002-6324-2854</orcidid><orcidid>https://orcid.org/0000-0001-8093-0723</orcidid><orcidid>https://orcid.org/0000-0001-8500-5406</orcidid><orcidid>https://orcid.org/0000-0001-9615-0094</orcidid></search><sort><creationdate>20161116</creationdate><title>A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin</title><author>Kinghorn, Kerri J ; Grönke, Sebastian ; Castillo-Quan, Jorge Iván ; Woodling, Nathaniel S ; Li, Li ; Sirka, Ernestas ; Gegg, Matthew ; Mills, Kevin ; Hardy, John ; Bjedov, Ivana ; Partridge, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ef7cc49b1b6df7888c801747f7c2c21ac5c2bdb7dd9865aa0c5216e0db7d8bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Autophagy - drug effects</topic><topic>Disease Models, Animal</topic><topic>Drosophila</topic><topic>Gaucher Disease - metabolism</topic><topic>Gaucher Disease - pathology</topic><topic>Gaucher Disease - prevention &amp; control</topic><topic>Gene Knockout Techniques</topic><topic>Glucosylceramidase - genetics</topic><topic>Lysosomes - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Sirolimus - administration &amp; dosage</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinghorn, Kerri J</creatorcontrib><creatorcontrib>Grönke, Sebastian</creatorcontrib><creatorcontrib>Castillo-Quan, Jorge Iván</creatorcontrib><creatorcontrib>Woodling, Nathaniel S</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Sirka, Ernestas</creatorcontrib><creatorcontrib>Gegg, Matthew</creatorcontrib><creatorcontrib>Mills, Kevin</creatorcontrib><creatorcontrib>Hardy, John</creatorcontrib><creatorcontrib>Bjedov, Ivana</creatorcontrib><creatorcontrib>Partridge, Linda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinghorn, Kerri J</au><au>Grönke, Sebastian</au><au>Castillo-Quan, Jorge Iván</au><au>Woodling, Nathaniel S</au><au>Li, Li</au><au>Sirka, Ernestas</au><au>Gegg, Matthew</au><au>Mills, Kevin</au><au>Hardy, John</au><au>Bjedov, Ivana</au><au>Partridge, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2016-11-16</date><risdate>2016</risdate><volume>36</volume><issue>46</issue><spage>11654</spage><epage>11670</epage><pages>11654-11670</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD SIGNIFICANCE STATEMENT: We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are required for autophagosome-lysosomal fusion in the autophagy pathway. We show in vivo that autophagy is impaired in dGBA-deficient fly brains. In response, mechanistic target of rapamycin (mTOR) activity is downregulated in dGBA-deficient flies and rapamycin ameliorates the lifespan, locomotor, and oxidative stress phenotypes. dGBA knock-out flies also display an upregulation of the Drosophila ortholog of mammalian TFEB, Mitf, a response that is unable to overcome the autophagy block. Together, our results suggest that rapamycin may have potential benefits in the treatment of GD, as well as PD linked to GBA1 mutations.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27852774</pmid><doi>10.1523/JNEUROSCI.4527-15.2016</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2048-4332</orcidid><orcidid>https://orcid.org/0000-0002-1539-5346</orcidid><orcidid>https://orcid.org/0000-0002-0298-3800</orcidid><orcidid>https://orcid.org/0000-0002-6324-2854</orcidid><orcidid>https://orcid.org/0000-0001-8093-0723</orcidid><orcidid>https://orcid.org/0000-0001-8500-5406</orcidid><orcidid>https://orcid.org/0000-0001-9615-0094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2016-11, Vol.36 (46), p.11654-11670
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5125225
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Animals, Genetically Modified
Autophagy - drug effects
Disease Models, Animal
Drosophila
Gaucher Disease - metabolism
Gaucher Disease - pathology
Gaucher Disease - prevention & control
Gene Knockout Techniques
Glucosylceramidase - genetics
Lysosomes - metabolism
Signal Transduction - drug effects
Sirolimus - administration & dosage
TOR Serine-Threonine Kinases - metabolism
title A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Drosophila%20Model%20of%20Neuronopathic%20Gaucher%20Disease%20Demonstrates%20Lysosomal-Autophagic%20Defects%20and%20Altered%20mTOR%20Signalling%20and%20Is%20Functionally%20Rescued%20by%20Rapamycin&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kinghorn,%20Kerri%20J&rft.date=2016-11-16&rft.volume=36&rft.issue=46&rft.spage=11654&rft.epage=11670&rft.pages=11654-11670&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4527-15.2016&rft_dat=%3Cproquest_pubme%3E1841134220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841134220&rft_id=info:pmid/27852774&rfr_iscdi=true