Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype
Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for la...
Gespeichert in:
Veröffentlicht in: | Biotechnology for biofuels 2016-11, Vol.9 (1), p.258-258, Article 258 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 1 |
container_start_page | 258 |
container_title | Biotechnology for biofuels |
container_volume | 9 |
creator | Traller, Jesse C Cokus, Shawn J Lopez, David A Gaidarenko, Olga Smith, Sarah R McCrow, John P Gallaher, Sean D Podell, Sheila Thompson, Michael Cook, Orna Morselli, Marco Jaroszewicz, Artur Allen, Eric E Allen, Andrew E Merchant, Sabeeha S Pellegrini, Matteo Hildebrand, Mark |
description | Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom
which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.
We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in
that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches.
Functional annotation and detailed cross-species comparison of key carbon rich processes in
highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems. |
doi_str_mv | 10.1186/s13068-016-0670-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5124317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471590659</galeid><sourcerecordid>A471590659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</originalsourceid><addsrcrecordid>eNqFkl1v1SAYxxujcXP6AbwxRG_0ohMKhfZmyXKic8kSE1-uCYc-tCwUauHM1U8v9cxlxxvDBTzwe174518ULwk-JaTh7yOhmDclJrzEXOCSPiqOiahZyRvKHj84HxXPYrzGmBOBxdPiqBItpQTj4-LXBfgwAlK-QyOkYXFrFAxKQ94cqN76sIuosyqFEW0W7UIC5xTS8zIlqxWa4QaUQz14yDEyDm7t1jqbFpTCTzV3SKHB9gNydrIdmobcMS0TPC-eGOUivLjbT4rvHz9823wqrz5fXG7Or0rNK57KRlChYYuFNk1LiOhqYRRjous60fCKsbppleEE2jpDxHDBcdsaDHgLxAhMT4qzfd1ptx2h0-DTrJycZjuqeZFBWXn44u0g-3Aja1IxSkQu8HpfIMRkZdQ2gR508B50koRyUtdtht7edZnDjx3EJEcb9aqUhyygrDDGNSO1-D9KGiaaljJGM_rmH_Q67Gaf5VqpmlFGqyZTp3uqVw6k9Sbkf-i8OhhtHhSMzffnTJC6xfzPsO8OEjKT4Db1ahejvPz65ZAle1bPIcYZzL1yBMvVhnJvQ5ltKFcbynXsVw8lv8_46zv6G3ly2BY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845434328</pqid></control><display><type>article</type><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark</creator><creatorcontrib>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom
which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.
We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in
that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches.
Functional annotation and detailed cross-species comparison of key carbon rich processes in
highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-016-0670-3</identifier><identifier>PMID: 27933100</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>60 APPLIED LIFE SCIENCES ; Algae ; algae biofuel ; Bacillariophyceae ; BASIC BIOLOGICAL SCIENCES ; biochemical pathways ; Biodiesel fuels ; Biofuels ; Biological products ; Biosynthesis ; Carbon ; carbon metabolism ; chitin ; Chlorophyll ; Chloroplasts ; Cyclotella ; Cyclotella cryptica ; diatom ; Diatoms ; DNA ; DNA methylation ; Enzymes ; Fatty acids ; Fossil fuels ; genes ; Genetic aspects ; Genetic engineering ; genetic traits ; genome sequence ; Genomes ; Genotype ; glycolysis ; lipid metabolism ; Lipids ; Localization ; Metabolism ; microalgae ; nuclear genome ; nucleotide sequences ; omega-3 fatty acids ; phenotype ; photosynthesis ; Plankton ; production technology ; Productivity ; Properties ; Silicon ; transposition (genetics) ; triacylglycerols</subject><ispartof>Biotechnology for biofuels, 2016-11, Vol.9 (1), p.258-258, Article 258</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</citedby><cites>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27933100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361559$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Traller, Jesse C</creatorcontrib><creatorcontrib>Cokus, Shawn J</creatorcontrib><creatorcontrib>Lopez, David A</creatorcontrib><creatorcontrib>Gaidarenko, Olga</creatorcontrib><creatorcontrib>Smith, Sarah R</creatorcontrib><creatorcontrib>McCrow, John P</creatorcontrib><creatorcontrib>Gallaher, Sean D</creatorcontrib><creatorcontrib>Podell, Sheila</creatorcontrib><creatorcontrib>Thompson, Michael</creatorcontrib><creatorcontrib>Cook, Orna</creatorcontrib><creatorcontrib>Morselli, Marco</creatorcontrib><creatorcontrib>Jaroszewicz, Artur</creatorcontrib><creatorcontrib>Allen, Eric E</creatorcontrib><creatorcontrib>Allen, Andrew E</creatorcontrib><creatorcontrib>Merchant, Sabeeha S</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Hildebrand, Mark</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom
which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.
We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in
that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches.
Functional annotation and detailed cross-species comparison of key carbon rich processes in
highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Algae</subject><subject>algae biofuel</subject><subject>Bacillariophyceae</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biochemical pathways</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biological products</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>carbon metabolism</subject><subject>chitin</subject><subject>Chlorophyll</subject><subject>Chloroplasts</subject><subject>Cyclotella</subject><subject>Cyclotella cryptica</subject><subject>diatom</subject><subject>Diatoms</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>genetic traits</subject><subject>genome sequence</subject><subject>Genomes</subject><subject>Genotype</subject><subject>glycolysis</subject><subject>lipid metabolism</subject><subject>Lipids</subject><subject>Localization</subject><subject>Metabolism</subject><subject>microalgae</subject><subject>nuclear genome</subject><subject>nucleotide sequences</subject><subject>omega-3 fatty acids</subject><subject>phenotype</subject><subject>photosynthesis</subject><subject>Plankton</subject><subject>production technology</subject><subject>Productivity</subject><subject>Properties</subject><subject>Silicon</subject><subject>transposition (genetics)</subject><subject>triacylglycerols</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkl1v1SAYxxujcXP6AbwxRG_0ohMKhfZmyXKic8kSE1-uCYc-tCwUauHM1U8v9cxlxxvDBTzwe174518ULwk-JaTh7yOhmDclJrzEXOCSPiqOiahZyRvKHj84HxXPYrzGmBOBxdPiqBItpQTj4-LXBfgwAlK-QyOkYXFrFAxKQ94cqN76sIuosyqFEW0W7UIC5xTS8zIlqxWa4QaUQz14yDEyDm7t1jqbFpTCTzV3SKHB9gNydrIdmobcMS0TPC-eGOUivLjbT4rvHz9823wqrz5fXG7Or0rNK57KRlChYYuFNk1LiOhqYRRjous60fCKsbppleEE2jpDxHDBcdsaDHgLxAhMT4qzfd1ptx2h0-DTrJycZjuqeZFBWXn44u0g-3Aja1IxSkQu8HpfIMRkZdQ2gR508B50koRyUtdtht7edZnDjx3EJEcb9aqUhyygrDDGNSO1-D9KGiaaljJGM_rmH_Q67Gaf5VqpmlFGqyZTp3uqVw6k9Sbkf-i8OhhtHhSMzffnTJC6xfzPsO8OEjKT4Db1ahejvPz65ZAle1bPIcYZzL1yBMvVhnJvQ5ltKFcbynXsVw8lv8_46zv6G3ly2BY</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Traller, Jesse C</creator><creator>Cokus, Shawn J</creator><creator>Lopez, David A</creator><creator>Gaidarenko, Olga</creator><creator>Smith, Sarah R</creator><creator>McCrow, John P</creator><creator>Gallaher, Sean D</creator><creator>Podell, Sheila</creator><creator>Thompson, Michael</creator><creator>Cook, Orna</creator><creator>Morselli, Marco</creator><creator>Jaroszewicz, Artur</creator><creator>Allen, Eric E</creator><creator>Allen, Andrew E</creator><creator>Merchant, Sabeeha S</creator><creator>Pellegrini, Matteo</creator><creator>Hildebrand, Mark</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161125</creationdate><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><author>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Algae</topic><topic>algae biofuel</topic><topic>Bacillariophyceae</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biochemical pathways</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biological products</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>carbon metabolism</topic><topic>chitin</topic><topic>Chlorophyll</topic><topic>Chloroplasts</topic><topic>Cyclotella</topic><topic>Cyclotella cryptica</topic><topic>diatom</topic><topic>Diatoms</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>genetic traits</topic><topic>genome sequence</topic><topic>Genomes</topic><topic>Genotype</topic><topic>glycolysis</topic><topic>lipid metabolism</topic><topic>Lipids</topic><topic>Localization</topic><topic>Metabolism</topic><topic>microalgae</topic><topic>nuclear genome</topic><topic>nucleotide sequences</topic><topic>omega-3 fatty acids</topic><topic>phenotype</topic><topic>photosynthesis</topic><topic>Plankton</topic><topic>production technology</topic><topic>Productivity</topic><topic>Properties</topic><topic>Silicon</topic><topic>transposition (genetics)</topic><topic>triacylglycerols</topic><toplevel>online_resources</toplevel><creatorcontrib>Traller, Jesse C</creatorcontrib><creatorcontrib>Cokus, Shawn J</creatorcontrib><creatorcontrib>Lopez, David A</creatorcontrib><creatorcontrib>Gaidarenko, Olga</creatorcontrib><creatorcontrib>Smith, Sarah R</creatorcontrib><creatorcontrib>McCrow, John P</creatorcontrib><creatorcontrib>Gallaher, Sean D</creatorcontrib><creatorcontrib>Podell, Sheila</creatorcontrib><creatorcontrib>Thompson, Michael</creatorcontrib><creatorcontrib>Cook, Orna</creatorcontrib><creatorcontrib>Morselli, Marco</creatorcontrib><creatorcontrib>Jaroszewicz, Artur</creatorcontrib><creatorcontrib>Allen, Eric E</creatorcontrib><creatorcontrib>Allen, Andrew E</creatorcontrib><creatorcontrib>Merchant, Sabeeha S</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Hildebrand, Mark</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traller, Jesse C</au><au>Cokus, Shawn J</au><au>Lopez, David A</au><au>Gaidarenko, Olga</au><au>Smith, Sarah R</au><au>McCrow, John P</au><au>Gallaher, Sean D</au><au>Podell, Sheila</au><au>Thompson, Michael</au><au>Cook, Orna</au><au>Morselli, Marco</au><au>Jaroszewicz, Artur</au><au>Allen, Eric E</au><au>Allen, Andrew E</au><au>Merchant, Sabeeha S</au><au>Pellegrini, Matteo</au><au>Hildebrand, Mark</au><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>258</spage><epage>258</epage><pages>258-258</pages><artnum>258</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom
which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.
We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in
that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches.
Functional annotation and detailed cross-species comparison of key carbon rich processes in
highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27933100</pmid><doi>10.1186/s13068-016-0670-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-6834 |
ispartof | Biotechnology for biofuels, 2016-11, Vol.9 (1), p.258-258, Article 258 |
issn | 1754-6834 1754-6834 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5124317 |
source | DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | 60 APPLIED LIFE SCIENCES Algae algae biofuel Bacillariophyceae BASIC BIOLOGICAL SCIENCES biochemical pathways Biodiesel fuels Biofuels Biological products Biosynthesis Carbon carbon metabolism chitin Chlorophyll Chloroplasts Cyclotella Cyclotella cryptica diatom Diatoms DNA DNA methylation Enzymes Fatty acids Fossil fuels genes Genetic aspects Genetic engineering genetic traits genome sequence Genomes Genotype glycolysis lipid metabolism Lipids Localization Metabolism microalgae nuclear genome nucleotide sequences omega-3 fatty acids phenotype photosynthesis Plankton production technology Productivity Properties Silicon transposition (genetics) triacylglycerols |
title | Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20and%20methylome%20of%20the%20oleaginous%20diatom%20Cyclotella%20cryptica%20reveal%20genetic%20flexibility%20toward%20a%20high%20lipid%20phenotype&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Traller,%20Jesse%20C&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20CA%20(United%20States)&rft.date=2016-11-25&rft.volume=9&rft.issue=1&rft.spage=258&rft.epage=258&rft.pages=258-258&rft.artnum=258&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-016-0670-3&rft_dat=%3Cgale_pubme%3EA471590659%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845434328&rft_id=info:pmid/27933100&rft_galeid=A471590659&rfr_iscdi=true |