Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype

Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2016-11, Vol.9 (1), p.258-258, Article 258
Hauptverfasser: Traller, Jesse C, Cokus, Shawn J, Lopez, David A, Gaidarenko, Olga, Smith, Sarah R, McCrow, John P, Gallaher, Sean D, Podell, Sheila, Thompson, Michael, Cook, Orna, Morselli, Marco, Jaroszewicz, Artur, Allen, Eric E, Allen, Andrew E, Merchant, Sabeeha S, Pellegrini, Matteo, Hildebrand, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 1
container_start_page 258
container_title Biotechnology for biofuels
container_volume 9
creator Traller, Jesse C
Cokus, Shawn J
Lopez, David A
Gaidarenko, Olga
Smith, Sarah R
McCrow, John P
Gallaher, Sean D
Podell, Sheila
Thompson, Michael
Cook, Orna
Morselli, Marco
Jaroszewicz, Artur
Allen, Eric E
Allen, Andrew E
Merchant, Sabeeha S
Pellegrini, Matteo
Hildebrand, Mark
description Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in  that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Functional annotation and detailed cross-species comparison of key carbon rich processes in highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.
doi_str_mv 10.1186/s13068-016-0670-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5124317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471590659</galeid><sourcerecordid>A471590659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</originalsourceid><addsrcrecordid>eNqFkl1v1SAYxxujcXP6AbwxRG_0ohMKhfZmyXKic8kSE1-uCYc-tCwUauHM1U8v9cxlxxvDBTzwe174518ULwk-JaTh7yOhmDclJrzEXOCSPiqOiahZyRvKHj84HxXPYrzGmBOBxdPiqBItpQTj4-LXBfgwAlK-QyOkYXFrFAxKQ94cqN76sIuosyqFEW0W7UIC5xTS8zIlqxWa4QaUQz14yDEyDm7t1jqbFpTCTzV3SKHB9gNydrIdmobcMS0TPC-eGOUivLjbT4rvHz9823wqrz5fXG7Or0rNK57KRlChYYuFNk1LiOhqYRRjous60fCKsbppleEE2jpDxHDBcdsaDHgLxAhMT4qzfd1ptx2h0-DTrJycZjuqeZFBWXn44u0g-3Aja1IxSkQu8HpfIMRkZdQ2gR508B50koRyUtdtht7edZnDjx3EJEcb9aqUhyygrDDGNSO1-D9KGiaaljJGM_rmH_Q67Gaf5VqpmlFGqyZTp3uqVw6k9Sbkf-i8OhhtHhSMzffnTJC6xfzPsO8OEjKT4Db1ahejvPz65ZAle1bPIcYZzL1yBMvVhnJvQ5ltKFcbynXsVw8lv8_46zv6G3ly2BY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845434328</pqid></control><display><type>article</type><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark</creator><creatorcontrib>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in  that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Functional annotation and detailed cross-species comparison of key carbon rich processes in highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-016-0670-3</identifier><identifier>PMID: 27933100</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>60 APPLIED LIFE SCIENCES ; Algae ; algae biofuel ; Bacillariophyceae ; BASIC BIOLOGICAL SCIENCES ; biochemical pathways ; Biodiesel fuels ; Biofuels ; Biological products ; Biosynthesis ; Carbon ; carbon metabolism ; chitin ; Chlorophyll ; Chloroplasts ; Cyclotella ; Cyclotella cryptica ; diatom ; Diatoms ; DNA ; DNA methylation ; Enzymes ; Fatty acids ; Fossil fuels ; genes ; Genetic aspects ; Genetic engineering ; genetic traits ; genome sequence ; Genomes ; Genotype ; glycolysis ; lipid metabolism ; Lipids ; Localization ; Metabolism ; microalgae ; nuclear genome ; nucleotide sequences ; omega-3 fatty acids ; phenotype ; photosynthesis ; Plankton ; production technology ; Productivity ; Properties ; Silicon ; transposition (genetics) ; triacylglycerols</subject><ispartof>Biotechnology for biofuels, 2016-11, Vol.9 (1), p.258-258, Article 258</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>The Author(s) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</citedby><cites>FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124317/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124317/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27933100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361559$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Traller, Jesse C</creatorcontrib><creatorcontrib>Cokus, Shawn J</creatorcontrib><creatorcontrib>Lopez, David A</creatorcontrib><creatorcontrib>Gaidarenko, Olga</creatorcontrib><creatorcontrib>Smith, Sarah R</creatorcontrib><creatorcontrib>McCrow, John P</creatorcontrib><creatorcontrib>Gallaher, Sean D</creatorcontrib><creatorcontrib>Podell, Sheila</creatorcontrib><creatorcontrib>Thompson, Michael</creatorcontrib><creatorcontrib>Cook, Orna</creatorcontrib><creatorcontrib>Morselli, Marco</creatorcontrib><creatorcontrib>Jaroszewicz, Artur</creatorcontrib><creatorcontrib>Allen, Eric E</creatorcontrib><creatorcontrib>Allen, Andrew E</creatorcontrib><creatorcontrib>Merchant, Sabeeha S</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Hildebrand, Mark</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in  that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Functional annotation and detailed cross-species comparison of key carbon rich processes in highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Algae</subject><subject>algae biofuel</subject><subject>Bacillariophyceae</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biochemical pathways</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biological products</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>carbon metabolism</subject><subject>chitin</subject><subject>Chlorophyll</subject><subject>Chloroplasts</subject><subject>Cyclotella</subject><subject>Cyclotella cryptica</subject><subject>diatom</subject><subject>Diatoms</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fossil fuels</subject><subject>genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>genetic traits</subject><subject>genome sequence</subject><subject>Genomes</subject><subject>Genotype</subject><subject>glycolysis</subject><subject>lipid metabolism</subject><subject>Lipids</subject><subject>Localization</subject><subject>Metabolism</subject><subject>microalgae</subject><subject>nuclear genome</subject><subject>nucleotide sequences</subject><subject>omega-3 fatty acids</subject><subject>phenotype</subject><subject>photosynthesis</subject><subject>Plankton</subject><subject>production technology</subject><subject>Productivity</subject><subject>Properties</subject><subject>Silicon</subject><subject>transposition (genetics)</subject><subject>triacylglycerols</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkl1v1SAYxxujcXP6AbwxRG_0ohMKhfZmyXKic8kSE1-uCYc-tCwUauHM1U8v9cxlxxvDBTzwe174518ULwk-JaTh7yOhmDclJrzEXOCSPiqOiahZyRvKHj84HxXPYrzGmBOBxdPiqBItpQTj4-LXBfgwAlK-QyOkYXFrFAxKQ94cqN76sIuosyqFEW0W7UIC5xTS8zIlqxWa4QaUQz14yDEyDm7t1jqbFpTCTzV3SKHB9gNydrIdmobcMS0TPC-eGOUivLjbT4rvHz9823wqrz5fXG7Or0rNK57KRlChYYuFNk1LiOhqYRRjous60fCKsbppleEE2jpDxHDBcdsaDHgLxAhMT4qzfd1ptx2h0-DTrJycZjuqeZFBWXn44u0g-3Aja1IxSkQu8HpfIMRkZdQ2gR508B50koRyUtdtht7edZnDjx3EJEcb9aqUhyygrDDGNSO1-D9KGiaaljJGM_rmH_Q67Gaf5VqpmlFGqyZTp3uqVw6k9Sbkf-i8OhhtHhSMzffnTJC6xfzPsO8OEjKT4Db1ahejvPz65ZAle1bPIcYZzL1yBMvVhnJvQ5ltKFcbynXsVw8lv8_46zv6G3ly2BY</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Traller, Jesse C</creator><creator>Cokus, Shawn J</creator><creator>Lopez, David A</creator><creator>Gaidarenko, Olga</creator><creator>Smith, Sarah R</creator><creator>McCrow, John P</creator><creator>Gallaher, Sean D</creator><creator>Podell, Sheila</creator><creator>Thompson, Michael</creator><creator>Cook, Orna</creator><creator>Morselli, Marco</creator><creator>Jaroszewicz, Artur</creator><creator>Allen, Eric E</creator><creator>Allen, Andrew E</creator><creator>Merchant, Sabeeha S</creator><creator>Pellegrini, Matteo</creator><creator>Hildebrand, Mark</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161125</creationdate><title>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</title><author>Traller, Jesse C ; Cokus, Shawn J ; Lopez, David A ; Gaidarenko, Olga ; Smith, Sarah R ; McCrow, John P ; Gallaher, Sean D ; Podell, Sheila ; Thompson, Michael ; Cook, Orna ; Morselli, Marco ; Jaroszewicz, Artur ; Allen, Eric E ; Allen, Andrew E ; Merchant, Sabeeha S ; Pellegrini, Matteo ; Hildebrand, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-8737ceb07cf89117d57fa447ddd786244589af61e95b071f676099f0e0be1f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Algae</topic><topic>algae biofuel</topic><topic>Bacillariophyceae</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biochemical pathways</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biological products</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>carbon metabolism</topic><topic>chitin</topic><topic>Chlorophyll</topic><topic>Chloroplasts</topic><topic>Cyclotella</topic><topic>Cyclotella cryptica</topic><topic>diatom</topic><topic>Diatoms</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fossil fuels</topic><topic>genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>genetic traits</topic><topic>genome sequence</topic><topic>Genomes</topic><topic>Genotype</topic><topic>glycolysis</topic><topic>lipid metabolism</topic><topic>Lipids</topic><topic>Localization</topic><topic>Metabolism</topic><topic>microalgae</topic><topic>nuclear genome</topic><topic>nucleotide sequences</topic><topic>omega-3 fatty acids</topic><topic>phenotype</topic><topic>photosynthesis</topic><topic>Plankton</topic><topic>production technology</topic><topic>Productivity</topic><topic>Properties</topic><topic>Silicon</topic><topic>transposition (genetics)</topic><topic>triacylglycerols</topic><toplevel>online_resources</toplevel><creatorcontrib>Traller, Jesse C</creatorcontrib><creatorcontrib>Cokus, Shawn J</creatorcontrib><creatorcontrib>Lopez, David A</creatorcontrib><creatorcontrib>Gaidarenko, Olga</creatorcontrib><creatorcontrib>Smith, Sarah R</creatorcontrib><creatorcontrib>McCrow, John P</creatorcontrib><creatorcontrib>Gallaher, Sean D</creatorcontrib><creatorcontrib>Podell, Sheila</creatorcontrib><creatorcontrib>Thompson, Michael</creatorcontrib><creatorcontrib>Cook, Orna</creatorcontrib><creatorcontrib>Morselli, Marco</creatorcontrib><creatorcontrib>Jaroszewicz, Artur</creatorcontrib><creatorcontrib>Allen, Eric E</creatorcontrib><creatorcontrib>Allen, Andrew E</creatorcontrib><creatorcontrib>Merchant, Sabeeha S</creatorcontrib><creatorcontrib>Pellegrini, Matteo</creatorcontrib><creatorcontrib>Hildebrand, Mark</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traller, Jesse C</au><au>Cokus, Shawn J</au><au>Lopez, David A</au><au>Gaidarenko, Olga</au><au>Smith, Sarah R</au><au>McCrow, John P</au><au>Gallaher, Sean D</au><au>Podell, Sheila</au><au>Thompson, Michael</au><au>Cook, Orna</au><au>Morselli, Marco</au><au>Jaroszewicz, Artur</au><au>Allen, Eric E</au><au>Allen, Andrew E</au><au>Merchant, Sabeeha S</au><au>Pellegrini, Matteo</au><au>Hildebrand, Mark</au><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>258</spage><epage>258</epage><pages>258-258</pages><artnum>258</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in  that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Functional annotation and detailed cross-species comparison of key carbon rich processes in highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27933100</pmid><doi>10.1186/s13068-016-0670-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-6834
ispartof Biotechnology for biofuels, 2016-11, Vol.9 (1), p.258-258, Article 258
issn 1754-6834
1754-6834
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5124317
source DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects 60 APPLIED LIFE SCIENCES
Algae
algae biofuel
Bacillariophyceae
BASIC BIOLOGICAL SCIENCES
biochemical pathways
Biodiesel fuels
Biofuels
Biological products
Biosynthesis
Carbon
carbon metabolism
chitin
Chlorophyll
Chloroplasts
Cyclotella
Cyclotella cryptica
diatom
Diatoms
DNA
DNA methylation
Enzymes
Fatty acids
Fossil fuels
genes
Genetic aspects
Genetic engineering
genetic traits
genome sequence
Genomes
Genotype
glycolysis
lipid metabolism
Lipids
Localization
Metabolism
microalgae
nuclear genome
nucleotide sequences
omega-3 fatty acids
phenotype
photosynthesis
Plankton
production technology
Productivity
Properties
Silicon
transposition (genetics)
triacylglycerols
title Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20and%20methylome%20of%20the%20oleaginous%20diatom%20Cyclotella%20cryptica%20reveal%20genetic%20flexibility%20toward%20a%20high%20lipid%20phenotype&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Traller,%20Jesse%20C&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20CA%20(United%20States)&rft.date=2016-11-25&rft.volume=9&rft.issue=1&rft.spage=258&rft.epage=258&rft.pages=258-258&rft.artnum=258&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-016-0670-3&rft_dat=%3Cgale_pubme%3EA471590659%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845434328&rft_id=info:pmid/27933100&rft_galeid=A471590659&rfr_iscdi=true