Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time

Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2017-01, Vol.112, p.108-121
Hauptverfasser: Eleftheriou, Cyril G, Zimmermann, Jonas B, Kjeldsen, Henrik D, David-Pur, Moshe, Hanein, Yael, Sernagor, Evelyne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 108
container_title Biomaterials
container_volume 112
creator Eleftheriou, Cyril G
Zimmermann, Jonas B
Kjeldsen, Henrik D
David-Pur, Moshe
Hanein, Yael
Sernagor, Evelyne
description Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.
doi_str_mv 10.1016/j.biomaterials.2016.10.018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216305592</els_id><sourcerecordid>1864573167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</originalsourceid><addsrcrecordid>eNqNUktv1DAQjhCILoW_gCJOXHY7tuNHeqhUbYEiVeIAnC2vMyneJvZiOyvtv8dhS1W40JM9_h4ee76qekdgRYCIs-1q48JoMkZnhrSi5awAKyDqWbUgSqolb4E_rxZAGrpsBaEn1auUtlBqaOjL6oRKKYC1fFHdrU3cBF9740OeNljjgDbH0GGq-xDriNl5M9Ru3A3G53ReX9YpT92hDn3ZxMnmKRbc-K7uJ2-zC7_pPuNtNHNVhz3GOrsRX1cv-tIwvrlfT6vvHz98W18vb758-ry-vFlaCTIvG9kYRdpGNBIQgHe056SVxjLZKt4q6Pse0PabjgjLVaMYIz1jRUKEUGDYaXVx9N1NmxE7iz6XFvUuutHEgw7G6b8R737o27DXnFAmGlIM3t8bxPBzwpT16JLFofwAhilpCgBUgGrYf6lEiYZLRoR8ApWDlFRxVajnR6qNIaWI_UPzBPScAb3VjzOg5wzMWMlAEb99_PwH6Z-hF8LVkYBlCHuHUSfr0FvsXCzD111wT7vn4h8bOzjvrBnu8IBpG6boZw3RiWrQX-c0zmEkggHnLWW_AKMa36Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850772858</pqid></control><display><type>article</type><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</creator><creatorcontrib>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</creatorcontrib><description>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.10.018</identifier><identifier>PMID: 27760395</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Advanced Basic Science ; animal models ; Animals ; Carbon nanotubes ; Carbon nanotubes (CNTs) ; Cells, Cultured ; Coupling ; Dentistry ; Electric Conductivity ; Electric Stimulation Therapy - instrumentation ; electrical treatment ; Electrodes ; Electrodes, Implanted ; electrophysiology ; Equipment Failure Analysis ; Functional integration ; ganglia ; Glia ; Inner limiting membrane (ILM) ; macular degeneration ; Materials Testing ; Mice ; Microelectrodes ; Multi electrode array (MEA) ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; prostheses ; Prosthesis ; Prosthesis Design ; Prosthetic devices ; Retina ; Retinal Degeneration - physiopathology ; Retinal Degeneration - therapy ; Stimulation ; Surface Properties ; Surgical implants ; Visual Prosthesis</subject><ispartof>Biomaterials, 2017-01, Vol.112, p.108-121</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</citedby><cites>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216305592$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eleftheriou, Cyril G</creatorcontrib><creatorcontrib>Zimmermann, Jonas B</creatorcontrib><creatorcontrib>Kjeldsen, Henrik D</creatorcontrib><creatorcontrib>David-Pur, Moshe</creatorcontrib><creatorcontrib>Hanein, Yael</creatorcontrib><creatorcontrib>Sernagor, Evelyne</creatorcontrib><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</description><subject>Action Potentials - physiology</subject><subject>Advanced Basic Science</subject><subject>animal models</subject><subject>Animals</subject><subject>Carbon nanotubes</subject><subject>Carbon nanotubes (CNTs)</subject><subject>Cells, Cultured</subject><subject>Coupling</subject><subject>Dentistry</subject><subject>Electric Conductivity</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>electrical treatment</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>electrophysiology</subject><subject>Equipment Failure Analysis</subject><subject>Functional integration</subject><subject>ganglia</subject><subject>Glia</subject><subject>Inner limiting membrane (ILM)</subject><subject>macular degeneration</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Multi electrode array (MEA)</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>prostheses</subject><subject>Prosthesis</subject><subject>Prosthesis Design</subject><subject>Prosthetic devices</subject><subject>Retina</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - therapy</subject><subject>Stimulation</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Visual Prosthesis</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUktv1DAQjhCILoW_gCJOXHY7tuNHeqhUbYEiVeIAnC2vMyneJvZiOyvtv8dhS1W40JM9_h4ee76qekdgRYCIs-1q48JoMkZnhrSi5awAKyDqWbUgSqolb4E_rxZAGrpsBaEn1auUtlBqaOjL6oRKKYC1fFHdrU3cBF9740OeNljjgDbH0GGq-xDriNl5M9Ru3A3G53ReX9YpT92hDn3ZxMnmKRbc-K7uJ2-zC7_pPuNtNHNVhz3GOrsRX1cv-tIwvrlfT6vvHz98W18vb758-ry-vFlaCTIvG9kYRdpGNBIQgHe056SVxjLZKt4q6Pse0PabjgjLVaMYIz1jRUKEUGDYaXVx9N1NmxE7iz6XFvUuutHEgw7G6b8R737o27DXnFAmGlIM3t8bxPBzwpT16JLFofwAhilpCgBUgGrYf6lEiYZLRoR8ApWDlFRxVajnR6qNIaWI_UPzBPScAb3VjzOg5wzMWMlAEb99_PwH6Z-hF8LVkYBlCHuHUSfr0FvsXCzD111wT7vn4h8bOzjvrBnu8IBpG6boZw3RiWrQX-c0zmEkggHnLWW_AKMa36Q</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Eleftheriou, Cyril G</creator><creator>Zimmermann, Jonas B</creator><creator>Kjeldsen, Henrik D</creator><creator>David-Pur, Moshe</creator><creator>Hanein, Yael</creator><creator>Sernagor, Evelyne</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><author>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Advanced Basic Science</topic><topic>animal models</topic><topic>Animals</topic><topic>Carbon nanotubes</topic><topic>Carbon nanotubes (CNTs)</topic><topic>Cells, Cultured</topic><topic>Coupling</topic><topic>Dentistry</topic><topic>Electric Conductivity</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>electrical treatment</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>electrophysiology</topic><topic>Equipment Failure Analysis</topic><topic>Functional integration</topic><topic>ganglia</topic><topic>Glia</topic><topic>Inner limiting membrane (ILM)</topic><topic>macular degeneration</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Multi electrode array (MEA)</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>prostheses</topic><topic>Prosthesis</topic><topic>Prosthesis Design</topic><topic>Prosthetic devices</topic><topic>Retina</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - therapy</topic><topic>Stimulation</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Visual Prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eleftheriou, Cyril G</creatorcontrib><creatorcontrib>Zimmermann, Jonas B</creatorcontrib><creatorcontrib>Kjeldsen, Henrik D</creatorcontrib><creatorcontrib>David-Pur, Moshe</creatorcontrib><creatorcontrib>Hanein, Yael</creatorcontrib><creatorcontrib>Sernagor, Evelyne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleftheriou, Cyril G</au><au>Zimmermann, Jonas B</au><au>Kjeldsen, Henrik D</au><au>David-Pur, Moshe</au><au>Hanein, Yael</au><au>Sernagor, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>112</volume><spage>108</spage><epage>121</epage><pages>108-121</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27760395</pmid><doi>10.1016/j.biomaterials.2016.10.018</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2017-01, Vol.112, p.108-121
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123641
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Advanced Basic Science
animal models
Animals
Carbon nanotubes
Carbon nanotubes (CNTs)
Cells, Cultured
Coupling
Dentistry
Electric Conductivity
Electric Stimulation Therapy - instrumentation
electrical treatment
Electrodes
Electrodes, Implanted
electrophysiology
Equipment Failure Analysis
Functional integration
ganglia
Glia
Inner limiting membrane (ILM)
macular degeneration
Materials Testing
Mice
Microelectrodes
Multi electrode array (MEA)
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
prostheses
Prosthesis
Prosthesis Design
Prosthetic devices
Retina
Retinal Degeneration - physiopathology
Retinal Degeneration - therapy
Stimulation
Surface Properties
Surgical implants
Visual Prosthesis
title Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20electrodes%20for%20retinal%20implants:%20A%20study%20of%20structural%20and%20functional%20integration%20over%20time&rft.jtitle=Biomaterials&rft.au=Eleftheriou,%20Cyril%20G&rft.date=2017-01-01&rft.volume=112&rft.spage=108&rft.epage=121&rft.pages=108-121&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.10.018&rft_dat=%3Cproquest_pubme%3E1864573167%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850772858&rft_id=info:pmid/27760395&rft_els_id=S0142961216305592&rfr_iscdi=true