Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time
Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retina...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2017-01, Vol.112, p.108-121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 108 |
container_title | Biomaterials |
container_volume | 112 |
creator | Eleftheriou, Cyril G Zimmermann, Jonas B Kjeldsen, Henrik D David-Pur, Moshe Hanein, Yael Sernagor, Evelyne |
description | Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices. |
doi_str_mv | 10.1016/j.biomaterials.2016.10.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216305592</els_id><sourcerecordid>1864573167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</originalsourceid><addsrcrecordid>eNqNUktv1DAQjhCILoW_gCJOXHY7tuNHeqhUbYEiVeIAnC2vMyneJvZiOyvtv8dhS1W40JM9_h4ee76qekdgRYCIs-1q48JoMkZnhrSi5awAKyDqWbUgSqolb4E_rxZAGrpsBaEn1auUtlBqaOjL6oRKKYC1fFHdrU3cBF9740OeNljjgDbH0GGq-xDriNl5M9Ru3A3G53ReX9YpT92hDn3ZxMnmKRbc-K7uJ2-zC7_pPuNtNHNVhz3GOrsRX1cv-tIwvrlfT6vvHz98W18vb758-ry-vFlaCTIvG9kYRdpGNBIQgHe056SVxjLZKt4q6Pse0PabjgjLVaMYIz1jRUKEUGDYaXVx9N1NmxE7iz6XFvUuutHEgw7G6b8R737o27DXnFAmGlIM3t8bxPBzwpT16JLFofwAhilpCgBUgGrYf6lEiYZLRoR8ApWDlFRxVajnR6qNIaWI_UPzBPScAb3VjzOg5wzMWMlAEb99_PwH6Z-hF8LVkYBlCHuHUSfr0FvsXCzD111wT7vn4h8bOzjvrBnu8IBpG6boZw3RiWrQX-c0zmEkggHnLWW_AKMa36Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850772858</pqid></control><display><type>article</type><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</creator><creatorcontrib>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</creatorcontrib><description>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.10.018</identifier><identifier>PMID: 27760395</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Advanced Basic Science ; animal models ; Animals ; Carbon nanotubes ; Carbon nanotubes (CNTs) ; Cells, Cultured ; Coupling ; Dentistry ; Electric Conductivity ; Electric Stimulation Therapy - instrumentation ; electrical treatment ; Electrodes ; Electrodes, Implanted ; electrophysiology ; Equipment Failure Analysis ; Functional integration ; ganglia ; Glia ; Inner limiting membrane (ILM) ; macular degeneration ; Materials Testing ; Mice ; Microelectrodes ; Multi electrode array (MEA) ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; prostheses ; Prosthesis ; Prosthesis Design ; Prosthetic devices ; Retina ; Retinal Degeneration - physiopathology ; Retinal Degeneration - therapy ; Stimulation ; Surface Properties ; Surgical implants ; Visual Prosthesis</subject><ispartof>Biomaterials, 2017-01, Vol.112, p.108-121</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</citedby><cites>FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216305592$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27760395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eleftheriou, Cyril G</creatorcontrib><creatorcontrib>Zimmermann, Jonas B</creatorcontrib><creatorcontrib>Kjeldsen, Henrik D</creatorcontrib><creatorcontrib>David-Pur, Moshe</creatorcontrib><creatorcontrib>Hanein, Yael</creatorcontrib><creatorcontrib>Sernagor, Evelyne</creatorcontrib><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</description><subject>Action Potentials - physiology</subject><subject>Advanced Basic Science</subject><subject>animal models</subject><subject>Animals</subject><subject>Carbon nanotubes</subject><subject>Carbon nanotubes (CNTs)</subject><subject>Cells, Cultured</subject><subject>Coupling</subject><subject>Dentistry</subject><subject>Electric Conductivity</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>electrical treatment</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>electrophysiology</subject><subject>Equipment Failure Analysis</subject><subject>Functional integration</subject><subject>ganglia</subject><subject>Glia</subject><subject>Inner limiting membrane (ILM)</subject><subject>macular degeneration</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Multi electrode array (MEA)</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>prostheses</subject><subject>Prosthesis</subject><subject>Prosthesis Design</subject><subject>Prosthetic devices</subject><subject>Retina</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - therapy</subject><subject>Stimulation</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Visual Prosthesis</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUktv1DAQjhCILoW_gCJOXHY7tuNHeqhUbYEiVeIAnC2vMyneJvZiOyvtv8dhS1W40JM9_h4ee76qekdgRYCIs-1q48JoMkZnhrSi5awAKyDqWbUgSqolb4E_rxZAGrpsBaEn1auUtlBqaOjL6oRKKYC1fFHdrU3cBF9740OeNljjgDbH0GGq-xDriNl5M9Ru3A3G53ReX9YpT92hDn3ZxMnmKRbc-K7uJ2-zC7_pPuNtNHNVhz3GOrsRX1cv-tIwvrlfT6vvHz98W18vb758-ry-vFlaCTIvG9kYRdpGNBIQgHe056SVxjLZKt4q6Pse0PabjgjLVaMYIz1jRUKEUGDYaXVx9N1NmxE7iz6XFvUuutHEgw7G6b8R737o27DXnFAmGlIM3t8bxPBzwpT16JLFofwAhilpCgBUgGrYf6lEiYZLRoR8ApWDlFRxVajnR6qNIaWI_UPzBPScAb3VjzOg5wzMWMlAEb99_PwH6Z-hF8LVkYBlCHuHUSfr0FvsXCzD111wT7vn4h8bOzjvrBnu8IBpG6boZw3RiWrQX-c0zmEkggHnLWW_AKMa36Q</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Eleftheriou, Cyril G</creator><creator>Zimmermann, Jonas B</creator><creator>Kjeldsen, Henrik D</creator><creator>David-Pur, Moshe</creator><creator>Hanein, Yael</creator><creator>Sernagor, Evelyne</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</title><author>Eleftheriou, Cyril G ; Zimmermann, Jonas B ; Kjeldsen, Henrik D ; David-Pur, Moshe ; Hanein, Yael ; Sernagor, Evelyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707t-474a81946470e005d2f5197ac37985980fff0ecfbd16c5848331f3381916680a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action Potentials - physiology</topic><topic>Advanced Basic Science</topic><topic>animal models</topic><topic>Animals</topic><topic>Carbon nanotubes</topic><topic>Carbon nanotubes (CNTs)</topic><topic>Cells, Cultured</topic><topic>Coupling</topic><topic>Dentistry</topic><topic>Electric Conductivity</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>electrical treatment</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>electrophysiology</topic><topic>Equipment Failure Analysis</topic><topic>Functional integration</topic><topic>ganglia</topic><topic>Glia</topic><topic>Inner limiting membrane (ILM)</topic><topic>macular degeneration</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Multi electrode array (MEA)</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>prostheses</topic><topic>Prosthesis</topic><topic>Prosthesis Design</topic><topic>Prosthetic devices</topic><topic>Retina</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - therapy</topic><topic>Stimulation</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Visual Prosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eleftheriou, Cyril G</creatorcontrib><creatorcontrib>Zimmermann, Jonas B</creatorcontrib><creatorcontrib>Kjeldsen, Henrik D</creatorcontrib><creatorcontrib>David-Pur, Moshe</creatorcontrib><creatorcontrib>Hanein, Yael</creatorcontrib><creatorcontrib>Sernagor, Evelyne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eleftheriou, Cyril G</au><au>Zimmermann, Jonas B</au><au>Kjeldsen, Henrik D</au><au>David-Pur, Moshe</au><au>Hanein, Yael</au><au>Sernagor, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>112</volume><spage>108</spage><epage>121</epage><pages>108-121</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration. We investigated morphological changes at the bio-hybrid interface and changes in RGC responses to electrical stimulation following prolonged in vitro coupling to CNT electrodes. We observed gradual remodelling of the inner retina to incorporate CNT assemblies. Electrophysiological recordings demonstrate a progressive increase in coupling between RGCs and the CNT electrodes over three days, characterized by a gradual decrease in stimulation thresholds and increase in cellular recruitment. These results provide novel evidence for time-dependent formation of viable bio-hybrids between CNTs and the retina, demonstrating that CNTs are a promising material for inclusion in retinal prosthetic devices.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27760395</pmid><doi>10.1016/j.biomaterials.2016.10.018</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2017-01, Vol.112, p.108-121 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123641 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials - physiology Advanced Basic Science animal models Animals Carbon nanotubes Carbon nanotubes (CNTs) Cells, Cultured Coupling Dentistry Electric Conductivity Electric Stimulation Therapy - instrumentation electrical treatment Electrodes Electrodes, Implanted electrophysiology Equipment Failure Analysis Functional integration ganglia Glia Inner limiting membrane (ILM) macular degeneration Materials Testing Mice Microelectrodes Multi electrode array (MEA) Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure prostheses Prosthesis Prosthesis Design Prosthetic devices Retina Retinal Degeneration - physiopathology Retinal Degeneration - therapy Stimulation Surface Properties Surgical implants Visual Prosthesis |
title | Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20electrodes%20for%20retinal%20implants:%20A%20study%20of%20structural%20and%20functional%20integration%20over%20time&rft.jtitle=Biomaterials&rft.au=Eleftheriou,%20Cyril%20G&rft.date=2017-01-01&rft.volume=112&rft.spage=108&rft.epage=121&rft.pages=108-121&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.10.018&rft_dat=%3Cproquest_pubme%3E1864573167%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850772858&rft_id=info:pmid/27760395&rft_els_id=S0142961216305592&rfr_iscdi=true |