CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress

Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-11, Vol.6 (1), p.37827-37827, Article 37827
Hauptverfasser: Zhang, Yanyan, Dépond, Mallorie, He, Liang, Foudi, Adlen, Kwarteng, Edward Owusu, Lauret, Evelyne, Plo, Isabelle, Desterke, Christophe, Dessen, Philippe, Fujii, Nobutaka, Opolon, Paule, Herault, Olivier, Solary, Eric, Vainchenker, William, Joulin, Virginie, Louache, Fawzia, Wittner, Monika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37827
container_issue 1
container_start_page 37827
container_title Scientific reports
container_volume 6
creator Zhang, Yanyan
Dépond, Mallorie
He, Liang
Foudi, Adlen
Kwarteng, Edward Owusu
Lauret, Evelyne
Plo, Isabelle
Desterke, Christophe
Dessen, Philippe
Fujii, Nobutaka
Opolon, Paule
Herault, Olivier
Solary, Eric
Vainchenker, William
Joulin, Virginie
Louache, Fawzia
Wittner, Monika
description Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress. Disruption of CXCR4 receptor in mice leads to increased endogenous production of reactive oxygen species (ROS), resulting in p38 MAPK activation, increased DNA double-strand breaks and apoptosis leading to marked reduction in HSC repopulating potential. Increased ROS levels are directly responsible for exhaustion of the HSC pool and are not linked to loss of quiescence of CXCR4-deficient HSCs. Furthermore, we report that CXCL12 has a direct rescue effect on oxidative stress-induced HSC damage at the mitochondrial level. These data highlight the importance of CXCR4/CXCL12 axis in the regulation of lifespan of HSCs by limiting ROS generation and genotoxic stress.
doi_str_mv 10.1038/srep37827
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899370785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-cb614050726ddc2196713008c9d99a67034ce3f46e2aaabee08c8b4366e7bf073</originalsourceid><addsrcrecordid>eNplkV9rFDEUxYMottQ--AUk4IsW1-bfTJIXoSzVCguCKPgWMpm7OykzkzHJLOu3N-vWZa15SC6cX87NzUHoJSXvKeHqOkWYuFRMPkHnjIhqwThjT0_qM3SZ0j0pq2JaUP0cnTGpVM0qfo62yx_Lr-K67CvKsN35hF2YxwzRupxwB4PNYQoesnc4ZRiwg77HsOvsnLIPI85dDPOmwwl6cNlvAU8x5H1ZRLuxfkwZh51v7R8x5QgpvUDP1rZPcPlwXqDvH2-_Le8Wqy-fPi9vVgtXCZoXrqmpIBWRrG5bx6iuJeWEKKdbrW0tCRcO-FrUwKy1DUCRVCN4XYNs1kTyC_Th4DvNzQCtgzFH25sp-sHGXyZYb_5VRt-ZTdiaijKmtCgG7w4G3aNrdzcrU0aDOBhChWRc0S0t-JuHfjH8nCFlM_i0_zE7QpiToUoIwiopdUFfP0LvwxzH8huF0ppLIlVVqLcHysWQStTr4yMoMfv8zTH_wr46HfZI_k27AFcHIBVp3EA8afmf22_bgbs3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899370785</pqid></control><display><type>article</type><title>CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Zhang, Yanyan ; Dépond, Mallorie ; He, Liang ; Foudi, Adlen ; Kwarteng, Edward Owusu ; Lauret, Evelyne ; Plo, Isabelle ; Desterke, Christophe ; Dessen, Philippe ; Fujii, Nobutaka ; Opolon, Paule ; Herault, Olivier ; Solary, Eric ; Vainchenker, William ; Joulin, Virginie ; Louache, Fawzia ; Wittner, Monika</creator><creatorcontrib>Zhang, Yanyan ; Dépond, Mallorie ; He, Liang ; Foudi, Adlen ; Kwarteng, Edward Owusu ; Lauret, Evelyne ; Plo, Isabelle ; Desterke, Christophe ; Dessen, Philippe ; Fujii, Nobutaka ; Opolon, Paule ; Herault, Olivier ; Solary, Eric ; Vainchenker, William ; Joulin, Virginie ; Louache, Fawzia ; Wittner, Monika</creatorcontrib><description>Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress. Disruption of CXCR4 receptor in mice leads to increased endogenous production of reactive oxygen species (ROS), resulting in p38 MAPK activation, increased DNA double-strand breaks and apoptosis leading to marked reduction in HSC repopulating potential. Increased ROS levels are directly responsible for exhaustion of the HSC pool and are not linked to loss of quiescence of CXCR4-deficient HSCs. Furthermore, we report that CXCL12 has a direct rescue effect on oxidative stress-induced HSC damage at the mitochondrial level. These data highlight the importance of CXCR4/CXCL12 axis in the regulation of lifespan of HSCs by limiting ROS generation and genotoxic stress.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep37827</identifier><identifier>PMID: 27886253</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/1542 ; 631/80/84 ; Apoptosis ; Biochemistry, Molecular Biology ; Bone marrow ; Cell self-renewal ; CXCL12 protein ; CXCR4 protein ; DNA damage ; Genes ; Genotoxicity ; Homeostasis ; Humanities and Social Sciences ; Life Sciences ; Life span ; MAP kinase ; Mitochondria ; multidisciplinary ; Oxidative stress ; Reactive oxygen species ; Rodents ; Science ; Stem cell transplantation ; Stem cells</subject><ispartof>Scientific reports, 2016-11, Vol.6 (1), p.37827-37827, Article 37827</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-cb614050726ddc2196713008c9d99a67034ce3f46e2aaabee08c8b4366e7bf073</citedby><cites>FETCH-LOGICAL-c541t-cb614050726ddc2196713008c9d99a67034ce3f46e2aaabee08c8b4366e7bf073</cites><orcidid>0000-0001-8029-8473 ; 0000-0002-5915-6910 ; 0000-0003-4705-202X ; 0000-0002-8629-1341 ; 0000-0003-3330-4062 ; 0000-0002-4799-5071 ; 0000-0002-7419-1124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122894/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122894/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27886253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-01472381$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Dépond, Mallorie</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Foudi, Adlen</creatorcontrib><creatorcontrib>Kwarteng, Edward Owusu</creatorcontrib><creatorcontrib>Lauret, Evelyne</creatorcontrib><creatorcontrib>Plo, Isabelle</creatorcontrib><creatorcontrib>Desterke, Christophe</creatorcontrib><creatorcontrib>Dessen, Philippe</creatorcontrib><creatorcontrib>Fujii, Nobutaka</creatorcontrib><creatorcontrib>Opolon, Paule</creatorcontrib><creatorcontrib>Herault, Olivier</creatorcontrib><creatorcontrib>Solary, Eric</creatorcontrib><creatorcontrib>Vainchenker, William</creatorcontrib><creatorcontrib>Joulin, Virginie</creatorcontrib><creatorcontrib>Louache, Fawzia</creatorcontrib><creatorcontrib>Wittner, Monika</creatorcontrib><title>CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress. Disruption of CXCR4 receptor in mice leads to increased endogenous production of reactive oxygen species (ROS), resulting in p38 MAPK activation, increased DNA double-strand breaks and apoptosis leading to marked reduction in HSC repopulating potential. Increased ROS levels are directly responsible for exhaustion of the HSC pool and are not linked to loss of quiescence of CXCR4-deficient HSCs. Furthermore, we report that CXCL12 has a direct rescue effect on oxidative stress-induced HSC damage at the mitochondrial level. These data highlight the importance of CXCR4/CXCL12 axis in the regulation of lifespan of HSCs by limiting ROS generation and genotoxic stress.</description><subject>631/532/1542</subject><subject>631/80/84</subject><subject>Apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bone marrow</subject><subject>Cell self-renewal</subject><subject>CXCL12 protein</subject><subject>CXCR4 protein</subject><subject>DNA damage</subject><subject>Genes</subject><subject>Genotoxicity</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>MAP kinase</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Oxidative stress</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Science</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV9rFDEUxYMottQ--AUk4IsW1-bfTJIXoSzVCguCKPgWMpm7OykzkzHJLOu3N-vWZa15SC6cX87NzUHoJSXvKeHqOkWYuFRMPkHnjIhqwThjT0_qM3SZ0j0pq2JaUP0cnTGpVM0qfo62yx_Lr-K67CvKsN35hF2YxwzRupxwB4PNYQoesnc4ZRiwg77HsOvsnLIPI85dDPOmwwl6cNlvAU8x5H1ZRLuxfkwZh51v7R8x5QgpvUDP1rZPcPlwXqDvH2-_Le8Wqy-fPi9vVgtXCZoXrqmpIBWRrG5bx6iuJeWEKKdbrW0tCRcO-FrUwKy1DUCRVCN4XYNs1kTyC_Th4DvNzQCtgzFH25sp-sHGXyZYb_5VRt-ZTdiaijKmtCgG7w4G3aNrdzcrU0aDOBhChWRc0S0t-JuHfjH8nCFlM_i0_zE7QpiToUoIwiopdUFfP0LvwxzH8huF0ppLIlVVqLcHysWQStTr4yMoMfv8zTH_wr46HfZI_k27AFcHIBVp3EA8afmf22_bgbs3</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Zhang, Yanyan</creator><creator>Dépond, Mallorie</creator><creator>He, Liang</creator><creator>Foudi, Adlen</creator><creator>Kwarteng, Edward Owusu</creator><creator>Lauret, Evelyne</creator><creator>Plo, Isabelle</creator><creator>Desterke, Christophe</creator><creator>Dessen, Philippe</creator><creator>Fujii, Nobutaka</creator><creator>Opolon, Paule</creator><creator>Herault, Olivier</creator><creator>Solary, Eric</creator><creator>Vainchenker, William</creator><creator>Joulin, Virginie</creator><creator>Louache, Fawzia</creator><creator>Wittner, Monika</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8029-8473</orcidid><orcidid>https://orcid.org/0000-0002-5915-6910</orcidid><orcidid>https://orcid.org/0000-0003-4705-202X</orcidid><orcidid>https://orcid.org/0000-0002-8629-1341</orcidid><orcidid>https://orcid.org/0000-0003-3330-4062</orcidid><orcidid>https://orcid.org/0000-0002-4799-5071</orcidid><orcidid>https://orcid.org/0000-0002-7419-1124</orcidid></search><sort><creationdate>20161125</creationdate><title>CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress</title><author>Zhang, Yanyan ; Dépond, Mallorie ; He, Liang ; Foudi, Adlen ; Kwarteng, Edward Owusu ; Lauret, Evelyne ; Plo, Isabelle ; Desterke, Christophe ; Dessen, Philippe ; Fujii, Nobutaka ; Opolon, Paule ; Herault, Olivier ; Solary, Eric ; Vainchenker, William ; Joulin, Virginie ; Louache, Fawzia ; Wittner, Monika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-cb614050726ddc2196713008c9d99a67034ce3f46e2aaabee08c8b4366e7bf073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/532/1542</topic><topic>631/80/84</topic><topic>Apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bone marrow</topic><topic>Cell self-renewal</topic><topic>CXCL12 protein</topic><topic>CXCR4 protein</topic><topic>DNA damage</topic><topic>Genes</topic><topic>Genotoxicity</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>MAP kinase</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Oxidative stress</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Science</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Dépond, Mallorie</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Foudi, Adlen</creatorcontrib><creatorcontrib>Kwarteng, Edward Owusu</creatorcontrib><creatorcontrib>Lauret, Evelyne</creatorcontrib><creatorcontrib>Plo, Isabelle</creatorcontrib><creatorcontrib>Desterke, Christophe</creatorcontrib><creatorcontrib>Dessen, Philippe</creatorcontrib><creatorcontrib>Fujii, Nobutaka</creatorcontrib><creatorcontrib>Opolon, Paule</creatorcontrib><creatorcontrib>Herault, Olivier</creatorcontrib><creatorcontrib>Solary, Eric</creatorcontrib><creatorcontrib>Vainchenker, William</creatorcontrib><creatorcontrib>Joulin, Virginie</creatorcontrib><creatorcontrib>Louache, Fawzia</creatorcontrib><creatorcontrib>Wittner, Monika</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanyan</au><au>Dépond, Mallorie</au><au>He, Liang</au><au>Foudi, Adlen</au><au>Kwarteng, Edward Owusu</au><au>Lauret, Evelyne</au><au>Plo, Isabelle</au><au>Desterke, Christophe</au><au>Dessen, Philippe</au><au>Fujii, Nobutaka</au><au>Opolon, Paule</au><au>Herault, Olivier</au><au>Solary, Eric</au><au>Vainchenker, William</au><au>Joulin, Virginie</au><au>Louache, Fawzia</au><au>Wittner, Monika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-11-25</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>37827</spage><epage>37827</epage><pages>37827-37827</pages><artnum>37827</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress. Disruption of CXCR4 receptor in mice leads to increased endogenous production of reactive oxygen species (ROS), resulting in p38 MAPK activation, increased DNA double-strand breaks and apoptosis leading to marked reduction in HSC repopulating potential. Increased ROS levels are directly responsible for exhaustion of the HSC pool and are not linked to loss of quiescence of CXCR4-deficient HSCs. Furthermore, we report that CXCL12 has a direct rescue effect on oxidative stress-induced HSC damage at the mitochondrial level. These data highlight the importance of CXCR4/CXCL12 axis in the regulation of lifespan of HSCs by limiting ROS generation and genotoxic stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27886253</pmid><doi>10.1038/srep37827</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8029-8473</orcidid><orcidid>https://orcid.org/0000-0002-5915-6910</orcidid><orcidid>https://orcid.org/0000-0003-4705-202X</orcidid><orcidid>https://orcid.org/0000-0002-8629-1341</orcidid><orcidid>https://orcid.org/0000-0003-3330-4062</orcidid><orcidid>https://orcid.org/0000-0002-4799-5071</orcidid><orcidid>https://orcid.org/0000-0002-7419-1124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-11, Vol.6 (1), p.37827-37827, Article 37827
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122894
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/532/1542
631/80/84
Apoptosis
Biochemistry, Molecular Biology
Bone marrow
Cell self-renewal
CXCL12 protein
CXCR4 protein
DNA damage
Genes
Genotoxicity
Homeostasis
Humanities and Social Sciences
Life Sciences
Life span
MAP kinase
Mitochondria
multidisciplinary
Oxidative stress
Reactive oxygen species
Rodents
Science
Stem cell transplantation
Stem cells
title CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXCR4/CXCL12%20axis%20counteracts%20hematopoietic%20stem%20cell%20exhaustion%20through%20selective%20protection%20against%20oxidative%20stress&rft.jtitle=Scientific%20reports&rft.au=Zhang,%20Yanyan&rft.date=2016-11-25&rft.volume=6&rft.issue=1&rft.spage=37827&rft.epage=37827&rft.pages=37827-37827&rft.artnum=37827&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep37827&rft_dat=%3Cproquest_pubme%3E1899370785%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899370785&rft_id=info:pmid/27886253&rfr_iscdi=true