Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization
During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This met...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-08, Vol.63 (3), p.433-444 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 3 |
container_start_page | 433 |
container_title | Molecular cell |
container_volume | 63 |
creator | Rodríguez-Molina, Juan B. Tseng, Sandra C. Simonett, Shane P. Taunton, Jack Ansari, Aseem Z. |
description | During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
[Display omitted]
•A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts
Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation. |
doi_str_mv | 10.1016/j.molcel.2016.06.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516302945</els_id><sourcerecordid>1809602593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</originalsourceid><addsrcrecordid>eNqFUcFuEzEQtRCIlsIfIOQjl01tr9fOXpCqKKVRqyKVIo7WxDubOuzawd6sBAe-HadJC72ANJI9mvee_eYR8pazCWdcna4nfegsdhORuwnLVapn5JizWheSK_n8cBdaVUfkVUprxrispvVLciS01Lpm-pj8mvuV84gRGzoLI3ToB7rwYAc3wuCCp6Glt-eLxUVx6TwkpDc4InSJgqfzLvjVHjW7Q_ttE1xmg28yKG27IVHn6VfXYNpEhIb2N9dn9PMAS9e5n_e81-RFm8XwzeE8IV_O57ezi-Lq08fF7OyqsJUSQ9FMS6gtU9pKpTgHpTXXFa8kSi55xVCVedCCVVpAKUEyiy0Tbe6WutVYnpAPe93NdtljY7PLCJ3ZRNdD_GECOPN04t2dWYXRVFwIpcss8P4gEMP3LabB9C7l7XfgMWyTESxvt9blVP8XyqesVkxU9U5V7qE2hpQito8_4szsUjZrs0_Z7FI2LFepMu3d324eSQ-x_rGLeaejw2iSdegtNi6iHUwT3L9f-A0ij7vb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809602593</pqid></control><display><type>article</type><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</creator><creatorcontrib>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</creatorcontrib><description>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
[Display omitted]
•A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts
Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.06.036</identifier><identifier>PMID: 27477907</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cyclin-Dependent Kinases - antagonists & inhibitors ; Cyclin-Dependent Kinases - chemistry ; Cyclin-Dependent Kinases - genetics ; Cyclin-Dependent Kinases - metabolism ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; DNA-directed RNA polymerase ; Humans ; messenger RNA ; Models, Molecular ; Mutation ; nucleosomes ; Nucleosomes - enzymology ; Nucleosomes - genetics ; phenotype ; Phosphorylation ; Promoter Regions, Genetic ; Protein Conformation ; Protein Engineering ; Protein Kinase Inhibitors - pharmacology ; RNA Stability - drug effects ; RNA, Fungal - drug effects ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae Proteins - antagonists & inhibitors ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; Time Factors ; Transcription Elongation, Genetic - drug effects ; yeasts</subject><ispartof>Molecular cell, 2016-08, Vol.63 (3), p.433-444</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</citedby><cites>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516302945$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Molina, Juan B.</creatorcontrib><creatorcontrib>Tseng, Sandra C.</creatorcontrib><creatorcontrib>Simonett, Shane P.</creatorcontrib><creatorcontrib>Taunton, Jack</creatorcontrib><creatorcontrib>Ansari, Aseem Z.</creatorcontrib><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
[Display omitted]
•A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts
Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</description><subject>Cyclin-Dependent Kinases - antagonists & inhibitors</subject><subject>Cyclin-Dependent Kinases - chemistry</subject><subject>Cyclin-Dependent Kinases - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Humans</subject><subject>messenger RNA</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>nucleosomes</subject><subject>Nucleosomes - enzymology</subject><subject>Nucleosomes - genetics</subject><subject>phenotype</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>RNA Stability - drug effects</subject><subject>RNA, Fungal - drug effects</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Transcription Elongation, Genetic - drug effects</subject><subject>yeasts</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFuEzEQtRCIlsIfIOQjl01tr9fOXpCqKKVRqyKVIo7WxDubOuzawd6sBAe-HadJC72ANJI9mvee_eYR8pazCWdcna4nfegsdhORuwnLVapn5JizWheSK_n8cBdaVUfkVUprxrispvVLciS01Lpm-pj8mvuV84gRGzoLI3ToB7rwYAc3wuCCp6Glt-eLxUVx6TwkpDc4InSJgqfzLvjVHjW7Q_ttE1xmg28yKG27IVHn6VfXYNpEhIb2N9dn9PMAS9e5n_e81-RFm8XwzeE8IV_O57ezi-Lq08fF7OyqsJUSQ9FMS6gtU9pKpTgHpTXXFa8kSi55xVCVedCCVVpAKUEyiy0Tbe6WutVYnpAPe93NdtljY7PLCJ3ZRNdD_GECOPN04t2dWYXRVFwIpcss8P4gEMP3LabB9C7l7XfgMWyTESxvt9blVP8XyqesVkxU9U5V7qE2hpQito8_4szsUjZrs0_Z7FI2LFepMu3d324eSQ-x_rGLeaejw2iSdegtNi6iHUwT3L9f-A0ij7vb</recordid><startdate>20160804</startdate><enddate>20160804</enddate><creator>Rodríguez-Molina, Juan B.</creator><creator>Tseng, Sandra C.</creator><creator>Simonett, Shane P.</creator><creator>Taunton, Jack</creator><creator>Ansari, Aseem Z.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160804</creationdate><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><author>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cyclin-Dependent Kinases - antagonists & inhibitors</topic><topic>Cyclin-Dependent Kinases - chemistry</topic><topic>Cyclin-Dependent Kinases - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Humans</topic><topic>messenger RNA</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>nucleosomes</topic><topic>Nucleosomes - enzymology</topic><topic>Nucleosomes - genetics</topic><topic>phenotype</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>RNA Stability - drug effects</topic><topic>RNA, Fungal - drug effects</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae Proteins - antagonists & inhibitors</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Transcription Elongation, Genetic - drug effects</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Molina, Juan B.</creatorcontrib><creatorcontrib>Tseng, Sandra C.</creatorcontrib><creatorcontrib>Simonett, Shane P.</creatorcontrib><creatorcontrib>Taunton, Jack</creatorcontrib><creatorcontrib>Ansari, Aseem Z.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Molina, Juan B.</au><au>Tseng, Sandra C.</au><au>Simonett, Shane P.</au><au>Taunton, Jack</au><au>Ansari, Aseem Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-08-04</date><risdate>2016</risdate><volume>63</volume><issue>3</issue><spage>433</spage><epage>444</epage><pages>433-444</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.
[Display omitted]
•A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts
Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27477907</pmid><doi>10.1016/j.molcel.2016.06.036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-08, Vol.63 (3), p.433-444 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122673 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Cyclin-Dependent Kinases - antagonists & inhibitors Cyclin-Dependent Kinases - chemistry Cyclin-Dependent Kinases - genetics Cyclin-Dependent Kinases - metabolism DNA Polymerase II - genetics DNA Polymerase II - metabolism DNA-directed RNA polymerase Humans messenger RNA Models, Molecular Mutation nucleosomes Nucleosomes - enzymology Nucleosomes - genetics phenotype Phosphorylation Promoter Regions, Genetic Protein Conformation Protein Engineering Protein Kinase Inhibitors - pharmacology RNA Stability - drug effects RNA, Fungal - drug effects RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Messenger - drug effects RNA, Messenger - genetics RNA, Messenger - metabolism Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins - antagonists & inhibitors Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Structure-Activity Relationship Time Factors Transcription Elongation, Genetic - drug effects yeasts |
title | Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Covalent%20Inactivation%20of%20TFIIH-Kinase%20Reveals%20an%20Elongation%20Checkpoint%20and%20Results%20in%20Widespread%20mRNA%20Stabilization&rft.jtitle=Molecular%20cell&rft.au=Rodr%C3%ADguez-Molina,%20Juan%C2%A0B.&rft.date=2016-08-04&rft.volume=63&rft.issue=3&rft.spage=433&rft.epage=444&rft.pages=433-444&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.06.036&rft_dat=%3Cproquest_pubme%3E1809602593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809602593&rft_id=info:pmid/27477907&rft_els_id=S1097276516302945&rfr_iscdi=true |