Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-08, Vol.63 (3), p.433-444
Hauptverfasser: Rodríguez-Molina, Juan B., Tseng, Sandra C., Simonett, Shane P., Taunton, Jack, Ansari, Aseem Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 3
container_start_page 433
container_title Molecular cell
container_volume 63
creator Rodríguez-Molina, Juan B.
Tseng, Sandra C.
Simonett, Shane P.
Taunton, Jack
Ansari, Aseem Z.
description During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. [Display omitted] •A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.
doi_str_mv 10.1016/j.molcel.2016.06.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516302945</els_id><sourcerecordid>1809602593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</originalsourceid><addsrcrecordid>eNqFUcFuEzEQtRCIlsIfIOQjl01tr9fOXpCqKKVRqyKVIo7WxDubOuzawd6sBAe-HadJC72ANJI9mvee_eYR8pazCWdcna4nfegsdhORuwnLVapn5JizWheSK_n8cBdaVUfkVUprxrispvVLciS01Lpm-pj8mvuV84gRGzoLI3ToB7rwYAc3wuCCp6Glt-eLxUVx6TwkpDc4InSJgqfzLvjVHjW7Q_ttE1xmg28yKG27IVHn6VfXYNpEhIb2N9dn9PMAS9e5n_e81-RFm8XwzeE8IV_O57ezi-Lq08fF7OyqsJUSQ9FMS6gtU9pKpTgHpTXXFa8kSi55xVCVedCCVVpAKUEyiy0Tbe6WutVYnpAPe93NdtljY7PLCJ3ZRNdD_GECOPN04t2dWYXRVFwIpcss8P4gEMP3LabB9C7l7XfgMWyTESxvt9blVP8XyqesVkxU9U5V7qE2hpQito8_4szsUjZrs0_Z7FI2LFepMu3d324eSQ-x_rGLeaejw2iSdegtNi6iHUwT3L9f-A0ij7vb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809602593</pqid></control><display><type>article</type><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</creator><creatorcontrib>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</creatorcontrib><description>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. [Display omitted] •A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.06.036</identifier><identifier>PMID: 27477907</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cyclin-Dependent Kinases - antagonists &amp; inhibitors ; Cyclin-Dependent Kinases - chemistry ; Cyclin-Dependent Kinases - genetics ; Cyclin-Dependent Kinases - metabolism ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; DNA-directed RNA polymerase ; Humans ; messenger RNA ; Models, Molecular ; Mutation ; nucleosomes ; Nucleosomes - enzymology ; Nucleosomes - genetics ; phenotype ; Phosphorylation ; Promoter Regions, Genetic ; Protein Conformation ; Protein Engineering ; Protein Kinase Inhibitors - pharmacology ; RNA Stability - drug effects ; RNA, Fungal - drug effects ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; Time Factors ; Transcription Elongation, Genetic - drug effects ; yeasts</subject><ispartof>Molecular cell, 2016-08, Vol.63 (3), p.433-444</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</citedby><cites>FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516302945$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Molina, Juan B.</creatorcontrib><creatorcontrib>Tseng, Sandra C.</creatorcontrib><creatorcontrib>Simonett, Shane P.</creatorcontrib><creatorcontrib>Taunton, Jack</creatorcontrib><creatorcontrib>Ansari, Aseem Z.</creatorcontrib><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. [Display omitted] •A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</description><subject>Cyclin-Dependent Kinases - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinases - chemistry</subject><subject>Cyclin-Dependent Kinases - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Humans</subject><subject>messenger RNA</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>nucleosomes</subject><subject>Nucleosomes - enzymology</subject><subject>Nucleosomes - genetics</subject><subject>phenotype</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>RNA Stability - drug effects</subject><subject>RNA, Fungal - drug effects</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Transcription Elongation, Genetic - drug effects</subject><subject>yeasts</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFuEzEQtRCIlsIfIOQjl01tr9fOXpCqKKVRqyKVIo7WxDubOuzawd6sBAe-HadJC72ANJI9mvee_eYR8pazCWdcna4nfegsdhORuwnLVapn5JizWheSK_n8cBdaVUfkVUprxrispvVLciS01Lpm-pj8mvuV84gRGzoLI3ToB7rwYAc3wuCCp6Glt-eLxUVx6TwkpDc4InSJgqfzLvjVHjW7Q_ttE1xmg28yKG27IVHn6VfXYNpEhIb2N9dn9PMAS9e5n_e81-RFm8XwzeE8IV_O57ezi-Lq08fF7OyqsJUSQ9FMS6gtU9pKpTgHpTXXFa8kSi55xVCVedCCVVpAKUEyiy0Tbe6WutVYnpAPe93NdtljY7PLCJ3ZRNdD_GECOPN04t2dWYXRVFwIpcss8P4gEMP3LabB9C7l7XfgMWyTESxvt9blVP8XyqesVkxU9U5V7qE2hpQito8_4szsUjZrs0_Z7FI2LFepMu3d324eSQ-x_rGLeaejw2iSdegtNi6iHUwT3L9f-A0ij7vb</recordid><startdate>20160804</startdate><enddate>20160804</enddate><creator>Rodríguez-Molina, Juan B.</creator><creator>Tseng, Sandra C.</creator><creator>Simonett, Shane P.</creator><creator>Taunton, Jack</creator><creator>Ansari, Aseem Z.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160804</creationdate><title>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</title><author>Rodríguez-Molina, Juan B. ; Tseng, Sandra C. ; Simonett, Shane P. ; Taunton, Jack ; Ansari, Aseem Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-d83a9c067c46611a677175154e414150e63466fac672a34a40cef02f72ab7f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cyclin-Dependent Kinases - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinases - chemistry</topic><topic>Cyclin-Dependent Kinases - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Humans</topic><topic>messenger RNA</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>nucleosomes</topic><topic>Nucleosomes - enzymology</topic><topic>Nucleosomes - genetics</topic><topic>phenotype</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>RNA Stability - drug effects</topic><topic>RNA, Fungal - drug effects</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - antagonists &amp; inhibitors</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Transcription Elongation, Genetic - drug effects</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Molina, Juan B.</creatorcontrib><creatorcontrib>Tseng, Sandra C.</creatorcontrib><creatorcontrib>Simonett, Shane P.</creatorcontrib><creatorcontrib>Taunton, Jack</creatorcontrib><creatorcontrib>Ansari, Aseem Z.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Molina, Juan B.</au><au>Tseng, Sandra C.</au><au>Simonett, Shane P.</au><au>Taunton, Jack</au><au>Ansari, Aseem Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-08-04</date><risdate>2016</risdate><volume>63</volume><issue>3</issue><spage>433</spage><epage>444</epage><pages>433-444</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. [Display omitted] •A general approach for covalent chemical inhibition of kinases in vivo•Targeted inhibition of Kin28 reveals an elusive elongation checkpoint in yeast•Varying impact on promoter escape and transition to productive elongation•Stabilization of existing mRNA buffers/masks reduction in nascent transcripts Rodriguez-Molina et al. describe a general strategy for irreversible inhibition of kinases in vivo. Inhibition of Kin28/CDK7 reduces nascent transcription, increases stability of existing mRNA, and reveals an underappreciated role for Kin28 in priming Pol II for productive transcription elongation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27477907</pmid><doi>10.1016/j.molcel.2016.06.036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-08, Vol.63 (3), p.433-444
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5122673
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Cyclin-Dependent Kinases - antagonists & inhibitors
Cyclin-Dependent Kinases - chemistry
Cyclin-Dependent Kinases - genetics
Cyclin-Dependent Kinases - metabolism
DNA Polymerase II - genetics
DNA Polymerase II - metabolism
DNA-directed RNA polymerase
Humans
messenger RNA
Models, Molecular
Mutation
nucleosomes
Nucleosomes - enzymology
Nucleosomes - genetics
phenotype
Phosphorylation
Promoter Regions, Genetic
Protein Conformation
Protein Engineering
Protein Kinase Inhibitors - pharmacology
RNA Stability - drug effects
RNA, Fungal - drug effects
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Messenger - drug effects
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - antagonists & inhibitors
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Structure-Activity Relationship
Time Factors
Transcription Elongation, Genetic - drug effects
yeasts
title Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Covalent%20Inactivation%20of%20TFIIH-Kinase%20Reveals%20an%20Elongation%20Checkpoint%20and%20Results%20in%20Widespread%20mRNA%20Stabilization&rft.jtitle=Molecular%20cell&rft.au=Rodr%C3%ADguez-Molina,%20Juan%C2%A0B.&rft.date=2016-08-04&rft.volume=63&rft.issue=3&rft.spage=433&rft.epage=444&rft.pages=433-444&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.06.036&rft_dat=%3Cproquest_pubme%3E1809602593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809602593&rft_id=info:pmid/27477907&rft_els_id=S1097276516302945&rfr_iscdi=true