Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC
Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or p...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2016-10, Vol.102 (2), p.233-243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Molecular microbiology |
container_volume | 102 |
creator | Huynh, TuAnh Ngoc Choi, Philip H. Sureka, Kamakshi Ledvina, Hannah E. Campillo, Julian Tong, Liang Woodward, Joshua J. |
description | Summary
Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions.
Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger. |
doi_str_mv | 10.1111/mmi.13456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4206770911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</originalsourceid><addsrcrecordid>eNp10c9qFDEABvAgil2rB19AAl7sYdr8n-QilMVqoUs9KHgL2UymmzKTrElGmVsfoc_okxh3a2kFc8khPz6-8AHwGqNjXM_JOPpjTBkXT8ACU8Eborh8ChZIcdRQSb4dgBc5XyOEKRL0OTggLW0llWwBzHK2g7ew879ubk9Xn2Ex6cqVDMvGQTvnYsrGx-CDg2tXTEV5DmVjsoNdHI0PMPY7G_MYh7k4WJIJeRtTcQlebqflS_CsN0N2r-7uQ_D17MOX5afm4vLj-fL0orG8dm5agUhnCGs5p1iuUc8lxY4r0RssmCWEOaUEE12HODe9VNauFZGOEEmI7Vt6CN7vc7fTenSddaE2GfQ2-dGkWUfj9eOX4Df6Kv7QHGMpW1wD3t0FpPh9crno0WfrhsEEF6essSSixYQhVunbf-h1nFKo39sppghXtKqjvbIp5pxcf18GI_1nOF2H07vhqn3zsP29_LtUBSd78NMPbv5_kl6tzveRvwFcRaSv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826492593</pqid></control><display><type>article</type><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</creator><creatorcontrib>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</creatorcontrib><description>Summary
Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions.
Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13456</identifier><identifier>PMID: 27378384</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine Monophosphate - metabolism ; ATP-Binding Cassette Transporters - metabolism ; Bacterial Proteins - metabolism ; Bacteriology ; Betaine - metabolism ; Biochemistry ; Biological Transport, Active ; Carnitine - metabolism ; Cellular biology ; Cyclic AMP - metabolism ; Cystathionine beta-Synthase - metabolism ; Dinucleoside Phosphates - metabolism ; Listeria ; Listeria monocytogenes - cytology ; Listeria monocytogenes - metabolism ; Microbiology ; Osmolar Concentration ; Osmotic Pressure - physiology</subject><ispartof>Molecular microbiology, 2016-10, Vol.102 (2), p.233-243</ispartof><rights>2016 John Wiley & Sons Ltd</rights><rights>2016 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</citedby><cites>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.13456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.13456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27378384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, TuAnh Ngoc</creatorcontrib><creatorcontrib>Choi, Philip H.</creatorcontrib><creatorcontrib>Sureka, Kamakshi</creatorcontrib><creatorcontrib>Ledvina, Hannah E.</creatorcontrib><creatorcontrib>Campillo, Julian</creatorcontrib><creatorcontrib>Tong, Liang</creatorcontrib><creatorcontrib>Woodward, Joshua J.</creatorcontrib><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions.
Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</description><subject>Adenosine Monophosphate - metabolism</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Betaine - metabolism</subject><subject>Biochemistry</subject><subject>Biological Transport, Active</subject><subject>Carnitine - metabolism</subject><subject>Cellular biology</subject><subject>Cyclic AMP - metabolism</subject><subject>Cystathionine beta-Synthase - metabolism</subject><subject>Dinucleoside Phosphates - metabolism</subject><subject>Listeria</subject><subject>Listeria monocytogenes - cytology</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Microbiology</subject><subject>Osmolar Concentration</subject><subject>Osmotic Pressure - physiology</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c9qFDEABvAgil2rB19AAl7sYdr8n-QilMVqoUs9KHgL2UymmzKTrElGmVsfoc_okxh3a2kFc8khPz6-8AHwGqNjXM_JOPpjTBkXT8ACU8Eborh8ChZIcdRQSb4dgBc5XyOEKRL0OTggLW0llWwBzHK2g7ew879ubk9Xn2Ex6cqVDMvGQTvnYsrGx-CDg2tXTEV5DmVjsoNdHI0PMPY7G_MYh7k4WJIJeRtTcQlebqflS_CsN0N2r-7uQ_D17MOX5afm4vLj-fL0orG8dm5agUhnCGs5p1iuUc8lxY4r0RssmCWEOaUEE12HODe9VNauFZGOEEmI7Vt6CN7vc7fTenSddaE2GfQ2-dGkWUfj9eOX4Df6Kv7QHGMpW1wD3t0FpPh9crno0WfrhsEEF6essSSixYQhVunbf-h1nFKo39sppghXtKqjvbIp5pxcf18GI_1nOF2H07vhqn3zsP29_LtUBSd78NMPbv5_kl6tzveRvwFcRaSv</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Huynh, TuAnh Ngoc</creator><creator>Choi, Philip H.</creator><creator>Sureka, Kamakshi</creator><creator>Ledvina, Hannah E.</creator><creator>Campillo, Julian</creator><creator>Tong, Liang</creator><creator>Woodward, Joshua J.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201610</creationdate><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><author>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Monophosphate - metabolism</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Betaine - metabolism</topic><topic>Biochemistry</topic><topic>Biological Transport, Active</topic><topic>Carnitine - metabolism</topic><topic>Cellular biology</topic><topic>Cyclic AMP - metabolism</topic><topic>Cystathionine beta-Synthase - metabolism</topic><topic>Dinucleoside Phosphates - metabolism</topic><topic>Listeria</topic><topic>Listeria monocytogenes - cytology</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Microbiology</topic><topic>Osmolar Concentration</topic><topic>Osmotic Pressure - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, TuAnh Ngoc</creatorcontrib><creatorcontrib>Choi, Philip H.</creatorcontrib><creatorcontrib>Sureka, Kamakshi</creatorcontrib><creatorcontrib>Ledvina, Hannah E.</creatorcontrib><creatorcontrib>Campillo, Julian</creatorcontrib><creatorcontrib>Tong, Liang</creatorcontrib><creatorcontrib>Woodward, Joshua J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, TuAnh Ngoc</au><au>Choi, Philip H.</au><au>Sureka, Kamakshi</au><au>Ledvina, Hannah E.</au><au>Campillo, Julian</au><au>Tong, Liang</au><au>Woodward, Joshua J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2016-10</date><risdate>2016</risdate><volume>102</volume><issue>2</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions.
Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27378384</pmid><doi>10.1111/mmi.13456</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2016-10, Vol.102 (2), p.233-243 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118871 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Adenosine Monophosphate - metabolism ATP-Binding Cassette Transporters - metabolism Bacterial Proteins - metabolism Bacteriology Betaine - metabolism Biochemistry Biological Transport, Active Carnitine - metabolism Cellular biology Cyclic AMP - metabolism Cystathionine beta-Synthase - metabolism Dinucleoside Phosphates - metabolism Listeria Listeria monocytogenes - cytology Listeria monocytogenes - metabolism Microbiology Osmolar Concentration Osmotic Pressure - physiology |
title | Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20di%E2%80%90AMP%20targets%20the%20cystathionine%20beta%E2%80%90synthase%20domain%20of%20the%20osmolyte%20transporter%20OpuC&rft.jtitle=Molecular%20microbiology&rft.au=Huynh,%20TuAnh%20Ngoc&rft.date=2016-10&rft.volume=102&rft.issue=2&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13456&rft_dat=%3Cproquest_pubme%3E4206770911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826492593&rft_id=info:pmid/27378384&rfr_iscdi=true |