Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC

Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2016-10, Vol.102 (2), p.233-243
Hauptverfasser: Huynh, TuAnh Ngoc, Choi, Philip H., Sureka, Kamakshi, Ledvina, Hannah E., Campillo, Julian, Tong, Liang, Woodward, Joshua J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2
container_start_page 233
container_title Molecular microbiology
container_volume 102
creator Huynh, TuAnh Ngoc
Choi, Philip H.
Sureka, Kamakshi
Ledvina, Hannah E.
Campillo, Julian
Tong, Liang
Woodward, Joshua J.
description Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions. Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.
doi_str_mv 10.1111/mmi.13456
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4206770911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</originalsourceid><addsrcrecordid>eNp10c9qFDEABvAgil2rB19AAl7sYdr8n-QilMVqoUs9KHgL2UymmzKTrElGmVsfoc_okxh3a2kFc8khPz6-8AHwGqNjXM_JOPpjTBkXT8ACU8Eborh8ChZIcdRQSb4dgBc5XyOEKRL0OTggLW0llWwBzHK2g7ew879ubk9Xn2Ex6cqVDMvGQTvnYsrGx-CDg2tXTEV5DmVjsoNdHI0PMPY7G_MYh7k4WJIJeRtTcQlebqflS_CsN0N2r-7uQ_D17MOX5afm4vLj-fL0orG8dm5agUhnCGs5p1iuUc8lxY4r0RssmCWEOaUEE12HODe9VNauFZGOEEmI7Vt6CN7vc7fTenSddaE2GfQ2-dGkWUfj9eOX4Df6Kv7QHGMpW1wD3t0FpPh9crno0WfrhsEEF6essSSixYQhVunbf-h1nFKo39sppghXtKqjvbIp5pxcf18GI_1nOF2H07vhqn3zsP29_LtUBSd78NMPbv5_kl6tzveRvwFcRaSv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826492593</pqid></control><display><type>article</type><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</creator><creatorcontrib>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</creatorcontrib><description>Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions. Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13456</identifier><identifier>PMID: 27378384</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine Monophosphate - metabolism ; ATP-Binding Cassette Transporters - metabolism ; Bacterial Proteins - metabolism ; Bacteriology ; Betaine - metabolism ; Biochemistry ; Biological Transport, Active ; Carnitine - metabolism ; Cellular biology ; Cyclic AMP - metabolism ; Cystathionine beta-Synthase - metabolism ; Dinucleoside Phosphates - metabolism ; Listeria ; Listeria monocytogenes - cytology ; Listeria monocytogenes - metabolism ; Microbiology ; Osmolar Concentration ; Osmotic Pressure - physiology</subject><ispartof>Molecular microbiology, 2016-10, Vol.102 (2), p.233-243</ispartof><rights>2016 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</citedby><cites>FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.13456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.13456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27378384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, TuAnh Ngoc</creatorcontrib><creatorcontrib>Choi, Philip H.</creatorcontrib><creatorcontrib>Sureka, Kamakshi</creatorcontrib><creatorcontrib>Ledvina, Hannah E.</creatorcontrib><creatorcontrib>Campillo, Julian</creatorcontrib><creatorcontrib>Tong, Liang</creatorcontrib><creatorcontrib>Woodward, Joshua J.</creatorcontrib><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions. Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</description><subject>Adenosine Monophosphate - metabolism</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Betaine - metabolism</subject><subject>Biochemistry</subject><subject>Biological Transport, Active</subject><subject>Carnitine - metabolism</subject><subject>Cellular biology</subject><subject>Cyclic AMP - metabolism</subject><subject>Cystathionine beta-Synthase - metabolism</subject><subject>Dinucleoside Phosphates - metabolism</subject><subject>Listeria</subject><subject>Listeria monocytogenes - cytology</subject><subject>Listeria monocytogenes - metabolism</subject><subject>Microbiology</subject><subject>Osmolar Concentration</subject><subject>Osmotic Pressure - physiology</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c9qFDEABvAgil2rB19AAl7sYdr8n-QilMVqoUs9KHgL2UymmzKTrElGmVsfoc_okxh3a2kFc8khPz6-8AHwGqNjXM_JOPpjTBkXT8ACU8Eborh8ChZIcdRQSb4dgBc5XyOEKRL0OTggLW0llWwBzHK2g7ew879ubk9Xn2Ex6cqVDMvGQTvnYsrGx-CDg2tXTEV5DmVjsoNdHI0PMPY7G_MYh7k4WJIJeRtTcQlebqflS_CsN0N2r-7uQ_D17MOX5afm4vLj-fL0orG8dm5agUhnCGs5p1iuUc8lxY4r0RssmCWEOaUEE12HODe9VNauFZGOEEmI7Vt6CN7vc7fTenSddaE2GfQ2-dGkWUfj9eOX4Df6Kv7QHGMpW1wD3t0FpPh9crno0WfrhsEEF6essSSixYQhVunbf-h1nFKo39sppghXtKqjvbIp5pxcf18GI_1nOF2H07vhqn3zsP29_LtUBSd78NMPbv5_kl6tzveRvwFcRaSv</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Huynh, TuAnh Ngoc</creator><creator>Choi, Philip H.</creator><creator>Sureka, Kamakshi</creator><creator>Ledvina, Hannah E.</creator><creator>Campillo, Julian</creator><creator>Tong, Liang</creator><creator>Woodward, Joshua J.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201610</creationdate><title>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</title><author>Huynh, TuAnh Ngoc ; Choi, Philip H. ; Sureka, Kamakshi ; Ledvina, Hannah E. ; Campillo, Julian ; Tong, Liang ; Woodward, Joshua J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-7602da24755318b0f5831e596fa164c224e99646dd055af89ccb928e22822cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Monophosphate - metabolism</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Betaine - metabolism</topic><topic>Biochemistry</topic><topic>Biological Transport, Active</topic><topic>Carnitine - metabolism</topic><topic>Cellular biology</topic><topic>Cyclic AMP - metabolism</topic><topic>Cystathionine beta-Synthase - metabolism</topic><topic>Dinucleoside Phosphates - metabolism</topic><topic>Listeria</topic><topic>Listeria monocytogenes - cytology</topic><topic>Listeria monocytogenes - metabolism</topic><topic>Microbiology</topic><topic>Osmolar Concentration</topic><topic>Osmotic Pressure - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, TuAnh Ngoc</creatorcontrib><creatorcontrib>Choi, Philip H.</creatorcontrib><creatorcontrib>Sureka, Kamakshi</creatorcontrib><creatorcontrib>Ledvina, Hannah E.</creatorcontrib><creatorcontrib>Campillo, Julian</creatorcontrib><creatorcontrib>Tong, Liang</creatorcontrib><creatorcontrib>Woodward, Joshua J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, TuAnh Ngoc</au><au>Choi, Philip H.</au><au>Sureka, Kamakshi</au><au>Ledvina, Hannah E.</au><au>Campillo, Julian</au><au>Tong, Liang</au><au>Woodward, Joshua J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2016-10</date><risdate>2016</risdate><volume>102</volume><issue>2</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions. Osmoadaptation is mediated in part through the uptake of the compatible solutes carnitine and betaine. Osmotolerance is inversely correlated with the production of the nucleotide c‐di‐AMP in Listeria monocytogenes, which directly binds to the CBS domain of the ATPase component of the carnitine transporter OpuC. These findings expand the link between c‐di‐AMP production and osmoadaptation among bacteria that produce this second messenger.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27378384</pmid><doi>10.1111/mmi.13456</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2016-10, Vol.102 (2), p.233-243
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118871
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Adenosine Monophosphate - metabolism
ATP-Binding Cassette Transporters - metabolism
Bacterial Proteins - metabolism
Bacteriology
Betaine - metabolism
Biochemistry
Biological Transport, Active
Carnitine - metabolism
Cellular biology
Cyclic AMP - metabolism
Cystathionine beta-Synthase - metabolism
Dinucleoside Phosphates - metabolism
Listeria
Listeria monocytogenes - cytology
Listeria monocytogenes - metabolism
Microbiology
Osmolar Concentration
Osmotic Pressure - physiology
title Cyclic di‐AMP targets the cystathionine beta‐synthase domain of the osmolyte transporter OpuC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20di%E2%80%90AMP%20targets%20the%20cystathionine%20beta%E2%80%90synthase%20domain%20of%20the%20osmolyte%20transporter%20OpuC&rft.jtitle=Molecular%20microbiology&rft.au=Huynh,%20TuAnh%20Ngoc&rft.date=2016-10&rft.volume=102&rft.issue=2&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13456&rft_dat=%3Cproquest_pubme%3E4206770911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826492593&rft_id=info:pmid/27378384&rfr_iscdi=true