Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation

Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-11, Vol.113 (45), p.12850-12855
Hauptverfasser: Zhao, Yan, Huang, Jin, Wang, Zhizheng, Jing, Shengli, Wang, Yang, Ouyang, Yidan, Cai, Baodong, Xin, Xiu-Fang, Liu, Xin, Zhang, Chunxiao, Pan, Yufang, Ma, Rui, Li, Qiaofeng, Jiang, Weihua, Zeng, Ya, Shangguan, Xinxin, Wang, Huiying, Du, Bo, Zhu, Lili, Xu, Xun, Feng, Yu-Qi, He, Sheng Yang, Chen, Rongzhi, Zhang, Qifa, 张启发, He, Guangcun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12855
container_issue 45
container_start_page 12850
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Zhao, Yan
Huang, Jin
Wang, Zhizheng
Jing, Shengli
Wang, Yang
Ouyang, Yidan
Cai, Baodong
Xin, Xiu-Fang
Liu, Xin
Zhang, Chunxiao
Pan, Yufang
Ma, Rui
Li, Qiaofeng
Jiang, Weihua
Zeng, Ya
Shangguan, Xinxin
Wang, Huiying
Du, Bo
Zhu, Lili
Xu, Xun
Feng, Yu-Qi
He, Sheng Yang
Chen, Rongzhi
Zhang, Qifa
张启发
He, Guangcun
description Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9. These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9. These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.
doi_str_mv 10.1073/pnas.1614862113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472398</jstor_id><sourcerecordid>26472398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5e9fdcf9be4492b18b8e825a0f2f6055fa70764f7c9dddd015691e52e3f5e1163</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS1ERI5ATQWyREOzicfrzwYpRIEgnQBFUFvevdnEpz17sfdOyn8fRxcSoMo0U8xvnubNI-QNsGNguj2Zoi_HoEAYxQHaZ2QBzEKjhGXPyYIxrhsjuDgkL0tZM8asNOwFOeRaWwBlF-TydBxxDD1dhR3mEuYbGiL1kX5bXtIrjEg__biwFKPvRiw0hx7pnGifNp2f6TT6OF-nacJMdz4HP4cUX5GDwY8FX9_3I_Lr8_nPs4tm-f3L17PTZdOLVs6NRDus-sF2KITlHZjOoOHSs4EPikk5eM20EoPu7aoWA6ksoOTYDhLr8e0R-bjXnbbdBlc9xjn70U05bHy-cckH9-8khmt3lXZOAoAGXgU-3Avk9HuLZXabUHocqylM2-LASFYfJQ08AW2lMlqwtqLv_0PXaZtj_USlBFOGWWsrdbKn-pxKyTg83A3M3UXr7qJ1j9HWjXd_233g_2RZgbd7YF3mlB_nSmjeWtPeAt_hqMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840680999</pqid></control><display><type>article</type><title>Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Yan ; Huang, Jin ; Wang, Zhizheng ; Jing, Shengli ; Wang, Yang ; Ouyang, Yidan ; Cai, Baodong ; Xin, Xiu-Fang ; Liu, Xin ; Zhang, Chunxiao ; Pan, Yufang ; Ma, Rui ; Li, Qiaofeng ; Jiang, Weihua ; Zeng, Ya ; Shangguan, Xinxin ; Wang, Huiying ; Du, Bo ; Zhu, Lili ; Xu, Xun ; Feng, Yu-Qi ; He, Sheng Yang ; Chen, Rongzhi ; Zhang, Qifa ; 张启发 ; He, Guangcun</creator><creatorcontrib>Zhao, Yan ; Huang, Jin ; Wang, Zhizheng ; Jing, Shengli ; Wang, Yang ; Ouyang, Yidan ; Cai, Baodong ; Xin, Xiu-Fang ; Liu, Xin ; Zhang, Chunxiao ; Pan, Yufang ; Ma, Rui ; Li, Qiaofeng ; Jiang, Weihua ; Zeng, Ya ; Shangguan, Xinxin ; Wang, Huiying ; Du, Bo ; Zhu, Lili ; Xu, Xun ; Feng, Yu-Qi ; He, Sheng Yang ; Chen, Rongzhi ; Zhang, Qifa ; 张启发 ; He, Guangcun</creatorcontrib><description>Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9. These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9. These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1614862113</identifier><identifier>PMID: 27791169</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biodiversity ; Biological Sciences ; Biotypes ; Chromosomes ; Cloning ; Genetic diversity ; Herbivores ; Insects ; Nilaparvata lugens ; Oryza sativa ; Pest control ; Phenotypes ; Rice</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12850-12855</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 8, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5e9fdcf9be4492b18b8e825a0f2f6055fa70764f7c9dddd015691e52e3f5e1163</citedby><cites>FETCH-LOGICAL-c435t-5e9fdcf9be4492b18b8e825a0f2f6055fa70764f7c9dddd015691e52e3f5e1163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472398$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472398$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Wang, Zhizheng</creatorcontrib><creatorcontrib>Jing, Shengli</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Ouyang, Yidan</creatorcontrib><creatorcontrib>Cai, Baodong</creatorcontrib><creatorcontrib>Xin, Xiu-Fang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zhang, Chunxiao</creatorcontrib><creatorcontrib>Pan, Yufang</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Jiang, Weihua</creatorcontrib><creatorcontrib>Zeng, Ya</creatorcontrib><creatorcontrib>Shangguan, Xinxin</creatorcontrib><creatorcontrib>Wang, Huiying</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Zhu, Lili</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><creatorcontrib>Chen, Rongzhi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><creatorcontrib>张启发</creatorcontrib><creatorcontrib>He, Guangcun</creatorcontrib><title>Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9. These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9. These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.</description><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Biotypes</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Genetic diversity</subject><subject>Herbivores</subject><subject>Insects</subject><subject>Nilaparvata lugens</subject><subject>Oryza sativa</subject><subject>Pest control</subject><subject>Phenotypes</subject><subject>Rice</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkb1vFDEQxS1ERI5ATQWyREOzicfrzwYpRIEgnQBFUFvevdnEpz17sfdOyn8fRxcSoMo0U8xvnubNI-QNsGNguj2Zoi_HoEAYxQHaZ2QBzEKjhGXPyYIxrhsjuDgkL0tZM8asNOwFOeRaWwBlF-TydBxxDD1dhR3mEuYbGiL1kX5bXtIrjEg__biwFKPvRiw0hx7pnGifNp2f6TT6OF-nacJMdz4HP4cUX5GDwY8FX9_3I_Lr8_nPs4tm-f3L17PTZdOLVs6NRDus-sF2KITlHZjOoOHSs4EPikk5eM20EoPu7aoWA6ksoOTYDhLr8e0R-bjXnbbdBlc9xjn70U05bHy-cckH9-8khmt3lXZOAoAGXgU-3Avk9HuLZXabUHocqylM2-LASFYfJQ08AW2lMlqwtqLv_0PXaZtj_USlBFOGWWsrdbKn-pxKyTg83A3M3UXr7qJ1j9HWjXd_233g_2RZgbd7YF3mlB_nSmjeWtPeAt_hqMQ</recordid><startdate>20161108</startdate><enddate>20161108</enddate><creator>Zhao, Yan</creator><creator>Huang, Jin</creator><creator>Wang, Zhizheng</creator><creator>Jing, Shengli</creator><creator>Wang, Yang</creator><creator>Ouyang, Yidan</creator><creator>Cai, Baodong</creator><creator>Xin, Xiu-Fang</creator><creator>Liu, Xin</creator><creator>Zhang, Chunxiao</creator><creator>Pan, Yufang</creator><creator>Ma, Rui</creator><creator>Li, Qiaofeng</creator><creator>Jiang, Weihua</creator><creator>Zeng, Ya</creator><creator>Shangguan, Xinxin</creator><creator>Wang, Huiying</creator><creator>Du, Bo</creator><creator>Zhu, Lili</creator><creator>Xu, Xun</creator><creator>Feng, Yu-Qi</creator><creator>He, Sheng Yang</creator><creator>Chen, Rongzhi</creator><creator>Zhang, Qifa</creator><creator>张启发</creator><creator>He, Guangcun</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161108</creationdate><title>Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation</title><author>Zhao, Yan ; Huang, Jin ; Wang, Zhizheng ; Jing, Shengli ; Wang, Yang ; Ouyang, Yidan ; Cai, Baodong ; Xin, Xiu-Fang ; Liu, Xin ; Zhang, Chunxiao ; Pan, Yufang ; Ma, Rui ; Li, Qiaofeng ; Jiang, Weihua ; Zeng, Ya ; Shangguan, Xinxin ; Wang, Huiying ; Du, Bo ; Zhu, Lili ; Xu, Xun ; Feng, Yu-Qi ; He, Sheng Yang ; Chen, Rongzhi ; Zhang, Qifa ; 张启发 ; He, Guangcun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5e9fdcf9be4492b18b8e825a0f2f6055fa70764f7c9dddd015691e52e3f5e1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Biotypes</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Genetic diversity</topic><topic>Herbivores</topic><topic>Insects</topic><topic>Nilaparvata lugens</topic><topic>Oryza sativa</topic><topic>Pest control</topic><topic>Phenotypes</topic><topic>Rice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Wang, Zhizheng</creatorcontrib><creatorcontrib>Jing, Shengli</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Ouyang, Yidan</creatorcontrib><creatorcontrib>Cai, Baodong</creatorcontrib><creatorcontrib>Xin, Xiu-Fang</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zhang, Chunxiao</creatorcontrib><creatorcontrib>Pan, Yufang</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Jiang, Weihua</creatorcontrib><creatorcontrib>Zeng, Ya</creatorcontrib><creatorcontrib>Shangguan, Xinxin</creatorcontrib><creatorcontrib>Wang, Huiying</creatorcontrib><creatorcontrib>Du, Bo</creatorcontrib><creatorcontrib>Zhu, Lili</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Feng, Yu-Qi</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><creatorcontrib>Chen, Rongzhi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><creatorcontrib>张启发</creatorcontrib><creatorcontrib>He, Guangcun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yan</au><au>Huang, Jin</au><au>Wang, Zhizheng</au><au>Jing, Shengli</au><au>Wang, Yang</au><au>Ouyang, Yidan</au><au>Cai, Baodong</au><au>Xin, Xiu-Fang</au><au>Liu, Xin</au><au>Zhang, Chunxiao</au><au>Pan, Yufang</au><au>Ma, Rui</au><au>Li, Qiaofeng</au><au>Jiang, Weihua</au><au>Zeng, Ya</au><au>Shangguan, Xinxin</au><au>Wang, Huiying</au><au>Du, Bo</au><au>Zhu, Lili</au><au>Xu, Xun</au><au>Feng, Yu-Qi</au><au>He, Sheng Yang</au><au>Chen, Rongzhi</au><au>Zhang, Qifa</au><au>张启发</au><au>He, Guangcun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-11-08</date><risdate>2016</risdate><volume>113</volume><issue>45</issue><spage>12850</spage><epage>12855</epage><pages>12850-12855</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9. These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9. These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791169</pmid><doi>10.1073/pnas.1614862113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-11, Vol.113 (45), p.12850-12855
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5111712
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biodiversity
Biological Sciences
Biotypes
Chromosomes
Cloning
Genetic diversity
Herbivores
Insects
Nilaparvata lugens
Oryza sativa
Pest control
Phenotypes
Rice
title Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allelic%20diversity%20in%20an%20NLR%20gene%20BPH9%20enables%20rice%20to%20combat%20planthopper%20variation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhao,%20Yan&rft.date=2016-11-08&rft.volume=113&rft.issue=45&rft.spage=12850&rft.epage=12855&rft.pages=12850-12855&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1614862113&rft_dat=%3Cjstor_pubme%3E26472398%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840680999&rft_id=info:pmid/27791169&rft_jstor_id=26472398&rfr_iscdi=true