Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules
To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we repor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-08, Vol.101 (32), p.11652-11657 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11657 |
---|---|
container_issue | 32 |
container_start_page | 11652 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Ma, Jinping Plesken, Heide Treisman, Jessica E. Edelman-Novemsky, Irit Ren, Mindong Sabatini, David D. |
description | To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we report the molecular identification of two classic Drosophila eye-color genes required for pigment granule biogenesis, claret and lightoid; the former encodes a protein containing seven repeats with sequence similarity to those that characterize regulator of chromosome condensation 1 (RCC1, a guanine nucleotide exchange factor for the small GTPase, Ran), and the latter encodes a rab GTPase, Rab-RP1. We demonstrate in transfected cells that Claret, through its RCC1-like domain, interacts preferentially with the nucleotide-free form of Rab-RP1, and this interaction involves Claret's first three RCC1-like repeats that are also critical for Claret's function in pigment granule biogenesis in transgenic rescue experiments. In addition, double-mutant analyses suggest that the gene products of claret and lightoid function in the same pathway, which is different from that of garnet and ruby (which encode the δ- and β-subunit of the tetrameric adaptor protein 3 complex, respectively). Taken together, our results suggest that Claret functions as a guanine nucleotide exchange factor for Lightoid/Rab-RP1 in an adaptor protein 3-independent vesicular trafficking pathway of pigment granule biogenesis. |
doi_str_mv | 10.1073/pnas.0401926101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_511034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372945</jstor_id><sourcerecordid>3372945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-de1fb8b2aa0ebcf926b1e63cd67e3d10ac8a13cb6ba1b3bcc18716d9af8d688a3</originalsourceid><addsrcrecordid>eNqFkkFvEzEQhVcIREPhzAUhiwMSh7Qee9frrcShhDRUiiBC5Wx5vbOJo40d1t6q_QP8bhwSNcClpznM90Yzb16WvQZ6BrTk51unwxnNKVRMAIUn2QhoBWORV_RpNqKUlWOZs_wkexHCmlJaFZI-z06gYLISIEfZr7ldrqK3DdGuIZNO9xgvyCX5rmsyu1nogH8a1zGQxRB1tLdIZoN21iH5OpgOfbQNkumdWWm3RHKlTfQ9sY58sn6JDoMNxLfkc--D365sp8n0HsnCLjfoIpn12g0dhpfZs1Z3AV8d6mn242p6M_kynn-bXU8u52NTMBHHDUJby5ppTbE2bTq6BhTcNKJE3gDVRmrgpha1hprXxoAsQTSVbmUjpNT8NPu4n7sd6g02Ju3Q605te7vR_b3y2qp_O86u1NLfqgKA8jzp3x_0vf85YIhqY4PBrtMO_RCUEGWVTK4eBUFSLqCQCXz3H7j2Q--SCYpRYBUtSp6g8z1kko2hx_ZhY6BqFwS1C4I6BiEp3v596JE_fD4BHw7ATnkcB4ozBSAKptqh6yLexcSSR9iEvNkj65D-_8BwXrIqL_hvOvzS-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201290573</pqid></control><display><type>article</type><title>Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Jinping ; Plesken, Heide ; Treisman, Jessica E. ; Edelman-Novemsky, Irit ; Ren, Mindong ; Sabatini, David D.</creator><creatorcontrib>Ma, Jinping ; Plesken, Heide ; Treisman, Jessica E. ; Edelman-Novemsky, Irit ; Ren, Mindong ; Sabatini, David D.</creatorcontrib><description>To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we report the molecular identification of two classic Drosophila eye-color genes required for pigment granule biogenesis, claret and lightoid; the former encodes a protein containing seven repeats with sequence similarity to those that characterize regulator of chromosome condensation 1 (RCC1, a guanine nucleotide exchange factor for the small GTPase, Ran), and the latter encodes a rab GTPase, Rab-RP1. We demonstrate in transfected cells that Claret, through its RCC1-like domain, interacts preferentially with the nucleotide-free form of Rab-RP1, and this interaction involves Claret's first three RCC1-like repeats that are also critical for Claret's function in pigment granule biogenesis in transgenic rescue experiments. In addition, double-mutant analyses suggest that the gene products of claret and lightoid function in the same pathway, which is different from that of garnet and ruby (which encode the δ- and β-subunit of the tetrameric adaptor protein 3 complex, respectively). Taken together, our results suggest that Claret functions as a guanine nucleotide exchange factor for Lightoid/Rab-RP1 in an adaptor protein 3-independent vesicular trafficking pathway of pigment granule biogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0401926101</identifier><identifier>PMID: 15289618</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Binding Sites ; Biological Sciences ; Cell Cycle Proteins ; Cellular biology ; Cytoplasmic Vesicles - chemistry ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; Eye Proteins - genetics ; Eye Proteins - physiology ; Garnets ; Genes ; Genetics ; GTP Phosphohydrolases ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - physiology ; Lysosomes - chemistry ; Messenger RNA ; Nuclear Proteins ; Phenotypes ; Photoreceptors ; Pigments ; Protein Binding ; Proteins ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - physiology ; Retinal pigments ; Retinal Pigments - biosynthesis ; Transgenic animals</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (32), p.11652-11657</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 10, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-de1fb8b2aa0ebcf926b1e63cd67e3d10ac8a13cb6ba1b3bcc18716d9af8d688a3</citedby><cites>FETCH-LOGICAL-c526t-de1fb8b2aa0ebcf926b1e63cd67e3d10ac8a13cb6ba1b3bcc18716d9af8d688a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372945$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372945$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15289618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Jinping</creatorcontrib><creatorcontrib>Plesken, Heide</creatorcontrib><creatorcontrib>Treisman, Jessica E.</creatorcontrib><creatorcontrib>Edelman-Novemsky, Irit</creatorcontrib><creatorcontrib>Ren, Mindong</creatorcontrib><creatorcontrib>Sabatini, David D.</creatorcontrib><title>Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we report the molecular identification of two classic Drosophila eye-color genes required for pigment granule biogenesis, claret and lightoid; the former encodes a protein containing seven repeats with sequence similarity to those that characterize regulator of chromosome condensation 1 (RCC1, a guanine nucleotide exchange factor for the small GTPase, Ran), and the latter encodes a rab GTPase, Rab-RP1. We demonstrate in transfected cells that Claret, through its RCC1-like domain, interacts preferentially with the nucleotide-free form of Rab-RP1, and this interaction involves Claret's first three RCC1-like repeats that are also critical for Claret's function in pigment granule biogenesis in transgenic rescue experiments. In addition, double-mutant analyses suggest that the gene products of claret and lightoid function in the same pathway, which is different from that of garnet and ruby (which encode the δ- and β-subunit of the tetrameric adaptor protein 3 complex, respectively). Taken together, our results suggest that Claret functions as a guanine nucleotide exchange factor for Lightoid/Rab-RP1 in an adaptor protein 3-independent vesicular trafficking pathway of pigment granule biogenesis.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cell Cycle Proteins</subject><subject>Cellular biology</subject><subject>Cytoplasmic Vesicles - chemistry</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - physiology</subject><subject>Garnets</subject><subject>Genes</subject><subject>Genetics</subject><subject>GTP Phosphohydrolases</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Lysosomes - chemistry</subject><subject>Messenger RNA</subject><subject>Nuclear Proteins</subject><subject>Phenotypes</subject><subject>Photoreceptors</subject><subject>Pigments</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - physiology</subject><subject>Retinal pigments</subject><subject>Retinal Pigments - biosynthesis</subject><subject>Transgenic animals</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFvEzEQhVcIREPhzAUhiwMSh7Qee9frrcShhDRUiiBC5Wx5vbOJo40d1t6q_QP8bhwSNcClpznM90Yzb16WvQZ6BrTk51unwxnNKVRMAIUn2QhoBWORV_RpNqKUlWOZs_wkexHCmlJaFZI-z06gYLISIEfZr7ldrqK3DdGuIZNO9xgvyCX5rmsyu1nogH8a1zGQxRB1tLdIZoN21iH5OpgOfbQNkumdWWm3RHKlTfQ9sY58sn6JDoMNxLfkc--D365sp8n0HsnCLjfoIpn12g0dhpfZs1Z3AV8d6mn242p6M_kynn-bXU8u52NTMBHHDUJby5ppTbE2bTq6BhTcNKJE3gDVRmrgpha1hprXxoAsQTSVbmUjpNT8NPu4n7sd6g02Ju3Q605te7vR_b3y2qp_O86u1NLfqgKA8jzp3x_0vf85YIhqY4PBrtMO_RCUEGWVTK4eBUFSLqCQCXz3H7j2Q--SCYpRYBUtSp6g8z1kko2hx_ZhY6BqFwS1C4I6BiEp3v596JE_fD4BHw7ATnkcB4ozBSAKptqh6yLexcSSR9iEvNkj65D-_8BwXrIqL_hvOvzS-w</recordid><startdate>20040810</startdate><enddate>20040810</enddate><creator>Ma, Jinping</creator><creator>Plesken, Heide</creator><creator>Treisman, Jessica E.</creator><creator>Edelman-Novemsky, Irit</creator><creator>Ren, Mindong</creator><creator>Sabatini, David D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040810</creationdate><title>Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules</title><author>Ma, Jinping ; Plesken, Heide ; Treisman, Jessica E. ; Edelman-Novemsky, Irit ; Ren, Mindong ; Sabatini, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-de1fb8b2aa0ebcf926b1e63cd67e3d10ac8a13cb6ba1b3bcc18716d9af8d688a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cell Cycle Proteins</topic><topic>Cellular biology</topic><topic>Cytoplasmic Vesicles - chemistry</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - physiology</topic><topic>Garnets</topic><topic>Genes</topic><topic>Genetics</topic><topic>GTP Phosphohydrolases</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Lysosomes - chemistry</topic><topic>Messenger RNA</topic><topic>Nuclear Proteins</topic><topic>Phenotypes</topic><topic>Photoreceptors</topic><topic>Pigments</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - physiology</topic><topic>Retinal pigments</topic><topic>Retinal Pigments - biosynthesis</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jinping</creatorcontrib><creatorcontrib>Plesken, Heide</creatorcontrib><creatorcontrib>Treisman, Jessica E.</creatorcontrib><creatorcontrib>Edelman-Novemsky, Irit</creatorcontrib><creatorcontrib>Ren, Mindong</creatorcontrib><creatorcontrib>Sabatini, David D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jinping</au><au>Plesken, Heide</au><au>Treisman, Jessica E.</au><au>Edelman-Novemsky, Irit</au><au>Ren, Mindong</au><au>Sabatini, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-08-10</date><risdate>2004</risdate><volume>101</volume><issue>32</issue><spage>11652</spage><epage>11657</epage><pages>11652-11657</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To elucidate the biogenetic pathways for the generation of lysosome-related organelles, we have chosen to study the Drosophila eye pigment granules because they are lysosome-related and the fruit fly provides the advantages of a genetic system in which many mutations affect eye color. Here, we report the molecular identification of two classic Drosophila eye-color genes required for pigment granule biogenesis, claret and lightoid; the former encodes a protein containing seven repeats with sequence similarity to those that characterize regulator of chromosome condensation 1 (RCC1, a guanine nucleotide exchange factor for the small GTPase, Ran), and the latter encodes a rab GTPase, Rab-RP1. We demonstrate in transfected cells that Claret, through its RCC1-like domain, interacts preferentially with the nucleotide-free form of Rab-RP1, and this interaction involves Claret's first three RCC1-like repeats that are also critical for Claret's function in pigment granule biogenesis in transgenic rescue experiments. In addition, double-mutant analyses suggest that the gene products of claret and lightoid function in the same pathway, which is different from that of garnet and ruby (which encode the δ- and β-subunit of the tetrameric adaptor protein 3 complex, respectively). Taken together, our results suggest that Claret functions as a guanine nucleotide exchange factor for Lightoid/Rab-RP1 in an adaptor protein 3-independent vesicular trafficking pathway of pigment granule biogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15289618</pmid><doi>10.1073/pnas.0401926101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (32), p.11652-11657 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_511034 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Binding Sites Biological Sciences Cell Cycle Proteins Cellular biology Cytoplasmic Vesicles - chemistry Drosophila Drosophila Proteins - genetics Drosophila Proteins - physiology Eye Proteins - genetics Eye Proteins - physiology Garnets Genes Genetics GTP Phosphohydrolases Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - physiology Lysosomes - chemistry Messenger RNA Nuclear Proteins Phenotypes Photoreceptors Pigments Protein Binding Proteins rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - physiology Retinal pigments Retinal Pigments - biosynthesis Transgenic animals |
title | Lightoid and Claret: A Rab GTPase and Its Putative Guanine Nucleotide Exchange Factor in Biogenesis of Drosophila Eye Pigment Granules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightoid%20and%20Claret:%20A%20Rab%20GTPase%20and%20Its%20Putative%20Guanine%20Nucleotide%20Exchange%20Factor%20in%20Biogenesis%20of%20Drosophila%20Eye%20Pigment%20Granules&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Jinping&rft.date=2004-08-10&rft.volume=101&rft.issue=32&rft.spage=11652&rft.epage=11657&rft.pages=11652-11657&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0401926101&rft_dat=%3Cjstor_pubme%3E3372945%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201290573&rft_id=info:pmid/15289618&rft_jstor_id=3372945&rfr_iscdi=true |