Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins
Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organopho...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-11, Vol.6 (1), p.37175, Article 37175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 37175 |
container_title | Scientific reports |
container_volume | 6 |
creator | Jacob, Reed B. Michaels, Kenan C. Anderson, Cathy J. Fay, James M. Dokholyan, Nikolay V. |
description | Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (k
cat
/K
m
of (2.0 ± 1.3) × 10
−1
M
−1
s
−1
) and paraoxon (k
cat
/K
m
of (4.6 ± 0.8) × 10
3
M
−1
s
−1
), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands. |
doi_str_mv | 10.1038/srep37175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5109037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899336072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-83a0bde84608c646085ef62bd1e95f492225e3b2a42e08775c2492f43833e3c13</originalsourceid><addsrcrecordid>eNplkc9O3DAQxq0KBIhy4AWqSD1RaYv_bhIOSIiWLhKil3K2HO8kMcrGqcdZxKFSX6Ovx5PUq11Wi_BhPLZ__mY0HyGnjH5lVBTnGGAQOcvVB3LEqVQTLjjf28kPyQniI01L8VKy8oAc8ryQSkp-RP7MTOgB0fVNdm_iGODl7z_MvrklBHTx-SKlaH06rQgfGtP7ofU4tCZCVjmP1iyhbyBktjXB2JhIjM5iZhY-fen8U7bwHdixMyF7Ate0MRuCj-B6_Ej2a9MhnGz2Y_Jw8_3X9Wxy9_PH7fXV3cRKquKkEIZWcyjklBZ2uooK6imv5gxKVcuSc65AVNxIDrTIc2V5uqylKIQAYZk4Jpdr3WGsFjC30MdgOj0EtzDhWXvj9NuX3rW68UutGC2pyJPA541A8L9HwKgf_Rj61LNmRVkKMaU5T9TZmrLBY_Kl3lZgVK_M0luzEvtpt6Ut-WpNAr6sARxWs4ewU_Kd2n8F_aKz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899336072</pqid></control><display><type>article</type><title>Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jacob, Reed B. ; Michaels, Kenan C. ; Anderson, Cathy J. ; Fay, James M. ; Dokholyan, Nikolay V.</creator><creatorcontrib>Jacob, Reed B. ; Michaels, Kenan C. ; Anderson, Cathy J. ; Fay, James M. ; Dokholyan, Nikolay V.</creatorcontrib><description>Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (k
cat
/K
m
of (2.0 ± 1.3) × 10
−1
M
−1
s
−1
) and paraoxon (k
cat
/K
m
of (4.6 ± 0.8) × 10
3
M
−1
s
−1
), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep37175</identifier><identifier>PMID: 27845442</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2164 ; 631/114/2410 ; 631/114/469 ; Acetylcholine ; Acetylcholinesterase ; Agrochemicals ; Chemical weapons ; Computer applications ; Data Mining ; Databases, Protein ; Drug development ; Humanities and Social Sciences ; Hydrolase ; Hydrolysis ; Molecular weight ; multidisciplinary ; Omethoate ; Organophosphates ; Organophosphates - chemistry ; Paraoxon ; Pesticides ; Poisoning ; Science ; Seizures ; Serine ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - genetics ; Serine hydrolase ; Synaptic cleft</subject><ispartof>Scientific reports, 2016-11, Vol.6 (1), p.37175, Article 37175</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-83a0bde84608c646085ef62bd1e95f492225e3b2a42e08775c2492f43833e3c13</citedby><cites>FETCH-LOGICAL-c405t-83a0bde84608c646085ef62bd1e95f492225e3b2a42e08775c2492f43833e3c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27845442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Reed B.</creatorcontrib><creatorcontrib>Michaels, Kenan C.</creatorcontrib><creatorcontrib>Anderson, Cathy J.</creatorcontrib><creatorcontrib>Fay, James M.</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><title>Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (k
cat
/K
m
of (2.0 ± 1.3) × 10
−1
M
−1
s
−1
) and paraoxon (k
cat
/K
m
of (4.6 ± 0.8) × 10
3
M
−1
s
−1
), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands.</description><subject>631/114/2164</subject><subject>631/114/2410</subject><subject>631/114/469</subject><subject>Acetylcholine</subject><subject>Acetylcholinesterase</subject><subject>Agrochemicals</subject><subject>Chemical weapons</subject><subject>Computer applications</subject><subject>Data Mining</subject><subject>Databases, Protein</subject><subject>Drug development</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolase</subject><subject>Hydrolysis</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Omethoate</subject><subject>Organophosphates</subject><subject>Organophosphates - chemistry</subject><subject>Paraoxon</subject><subject>Pesticides</subject><subject>Poisoning</subject><subject>Science</subject><subject>Seizures</subject><subject>Serine</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine hydrolase</subject><subject>Synaptic cleft</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc9O3DAQxq0KBIhy4AWqSD1RaYv_bhIOSIiWLhKil3K2HO8kMcrGqcdZxKFSX6Ovx5PUq11Wi_BhPLZ__mY0HyGnjH5lVBTnGGAQOcvVB3LEqVQTLjjf28kPyQniI01L8VKy8oAc8ryQSkp-RP7MTOgB0fVNdm_iGODl7z_MvrklBHTx-SKlaH06rQgfGtP7ofU4tCZCVjmP1iyhbyBktjXB2JhIjM5iZhY-fen8U7bwHdixMyF7Ate0MRuCj-B6_Ej2a9MhnGz2Y_Jw8_3X9Wxy9_PH7fXV3cRKquKkEIZWcyjklBZ2uooK6imv5gxKVcuSc65AVNxIDrTIc2V5uqylKIQAYZk4Jpdr3WGsFjC30MdgOj0EtzDhWXvj9NuX3rW68UutGC2pyJPA541A8L9HwKgf_Rj61LNmRVkKMaU5T9TZmrLBY_Kl3lZgVK_M0luzEvtpt6Ut-WpNAr6sARxWs4ewU_Kd2n8F_aKz</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Jacob, Reed B.</creator><creator>Michaels, Kenan C.</creator><creator>Anderson, Cathy J.</creator><creator>Fay, James M.</creator><creator>Dokholyan, Nikolay V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20161115</creationdate><title>Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins</title><author>Jacob, Reed B. ; Michaels, Kenan C. ; Anderson, Cathy J. ; Fay, James M. ; Dokholyan, Nikolay V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-83a0bde84608c646085ef62bd1e95f492225e3b2a42e08775c2492f43833e3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/114/2164</topic><topic>631/114/2410</topic><topic>631/114/469</topic><topic>Acetylcholine</topic><topic>Acetylcholinesterase</topic><topic>Agrochemicals</topic><topic>Chemical weapons</topic><topic>Computer applications</topic><topic>Data Mining</topic><topic>Databases, Protein</topic><topic>Drug development</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolase</topic><topic>Hydrolysis</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Omethoate</topic><topic>Organophosphates</topic><topic>Organophosphates - chemistry</topic><topic>Paraoxon</topic><topic>Pesticides</topic><topic>Poisoning</topic><topic>Science</topic><topic>Seizures</topic><topic>Serine</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine hydrolase</topic><topic>Synaptic cleft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Reed B.</creatorcontrib><creatorcontrib>Michaels, Kenan C.</creatorcontrib><creatorcontrib>Anderson, Cathy J.</creatorcontrib><creatorcontrib>Fay, James M.</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Reed B.</au><au>Michaels, Kenan C.</au><au>Anderson, Cathy J.</au><au>Fay, James M.</au><au>Dokholyan, Nikolay V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-11-15</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>37175</spage><pages>37175-</pages><artnum>37175</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 μM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (k
cat
/K
m
of (2.0 ± 1.3) × 10
−1
M
−1
s
−1
) and paraoxon (k
cat
/K
m
of (4.6 ± 0.8) × 10
3
M
−1
s
−1
), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27845442</pmid><doi>10.1038/srep37175</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-11, Vol.6 (1), p.37175, Article 37175 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5109037 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/114/2164 631/114/2410 631/114/469 Acetylcholine Acetylcholinesterase Agrochemicals Chemical weapons Computer applications Data Mining Databases, Protein Drug development Humanities and Social Sciences Hydrolase Hydrolysis Molecular weight multidisciplinary Omethoate Organophosphates Organophosphates - chemistry Paraoxon Pesticides Poisoning Science Seizures Serine Serine Endopeptidases - chemistry Serine Endopeptidases - genetics Serine hydrolase Synaptic cleft |
title | Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Nature%E2%80%99s%20Diversity:%20Discovering%20organophosphate%20bioscavenger%20characteristics%20among%20low%20molecular%20weight%20proteins&rft.jtitle=Scientific%20reports&rft.au=Jacob,%20Reed%20B.&rft.date=2016-11-15&rft.volume=6&rft.issue=1&rft.spage=37175&rft.pages=37175-&rft.artnum=37175&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep37175&rft_dat=%3Cproquest_pubme%3E1899336072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899336072&rft_id=info:pmid/27845442&rfr_iscdi=true |