A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals
One main challenge for medical investigators is the early diagnosis of Alzheimer’s disease (AD) because it provides greater opportunities for patients to be eligible for more clinical trials. In this study, higher order spectra of human speech signals during AD were explored to analyze and compare t...
Gespeichert in:
Veröffentlicht in: | Cognitive neurodynamics 2016-12, Vol.10 (6), p.495-503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 503 |
---|---|
container_issue | 6 |
container_start_page | 495 |
container_title | Cognitive neurodynamics |
container_volume | 10 |
creator | Nasrolahzadeh, Mahda Mohammadpoory, Zeynab Haddadnia, Javad |
description | One main challenge for medical investigators is the early diagnosis of Alzheimer’s disease (AD) because it provides greater opportunities for patients to be eligible for more clinical trials. In this study, higher order spectra of human speech signals during AD were explored to analyze and compare the quadratic phase coupling of spontaneous speech signals for healthy and AD subjects using bispectrum and bicoherence. The results showed that the quadratic phase couplings of spontaneous speech signal of persons with Alzheimer’s were reduced compared to healthy subject. However, the speech phase coupled harmonics shifted to the higher frequencies in Alzheimer’s than healthy subjects. In addition, it was shown not only are there significant differences between Alzheimer’s and control subjects in parameters estimated, but also the speech patterns appeared to have fluctuated in both types of spontaneous speech. |
doi_str_mv | 10.1007/s11571-016-9406-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5106459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844353841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f3ff97171377e04b6cf234f6fd70fa63516bd86b4948ff15eb06f1139258b0343</originalsourceid><addsrcrecordid>eNp1kcuKFTEQhoMozjj6AG4k4GY2ralOOpeNcBjGCwy40XXoS6U7Q3fnmPQZmFkJPoWv55OYpsfjBdykQuqrP_XzE_Ic2CtgTL1OAJWCgoEsjGCyYA_IKej8IpgxD493zU7Ik5SuGaukBvGYnJRKGwCjT8m3HZ3DDY50wmUIHXUhUqzjeEs7X_dzSD7R4OhuvBvQTxh_fP2ecithnZA2-ehomOng-wFjEWKHkaY9tkusR4pp8VO9-AxkibQP81LPGA5pRbAdaPL9XI_pKXnkcsFn9_WMfH57-enifXH18d2Hi91V0QrFlsJx54wCBVwpZKKRrSu5cNJ1irla8gpk02nZCCO0c1Bhw6QD4KasdMO44Gfkzaa7PzQTdi3O65p2H_OW8daG2tu_O7MfbB9ubAVMispkgfN7gRi-HLI9O_nU4jhutixoIXjFtYCMvvwHvQ6HuLq1pQEtlSkFyxRsVBtDShHdcRlgdo3YbhHbHLFdI7brzIs_XRwnfmWagXIDUm7NPcbfX_9f9Sf4z7TX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918679240</pqid></control><display><type>article</type><title>A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Nasrolahzadeh, Mahda ; Mohammadpoory, Zeynab ; Haddadnia, Javad</creator><creatorcontrib>Nasrolahzadeh, Mahda ; Mohammadpoory, Zeynab ; Haddadnia, Javad</creatorcontrib><description>One main challenge for medical investigators is the early diagnosis of Alzheimer’s disease (AD) because it provides greater opportunities for patients to be eligible for more clinical trials. In this study, higher order spectra of human speech signals during AD were explored to analyze and compare the quadratic phase coupling of spontaneous speech signals for healthy and AD subjects using bispectrum and bicoherence. The results showed that the quadratic phase couplings of spontaneous speech signal of persons with Alzheimer’s were reduced compared to healthy subject. However, the speech phase coupled harmonics shifted to the higher frequencies in Alzheimer’s than healthy subjects. In addition, it was shown not only are there significant differences between Alzheimer’s and control subjects in parameters estimated, but also the speech patterns appeared to have fluctuated in both types of spontaneous speech.</description><identifier>ISSN: 1871-4080</identifier><identifier>EISSN: 1871-4099</identifier><identifier>DOI: 10.1007/s11571-016-9406-0</identifier><identifier>PMID: 27891198</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alzheimer's disease ; Artificial Intelligence ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Clinical trials ; Cognitive Psychology ; Computer Science ; Couplings ; Diagnosis ; Magnetic resonance imaging ; Methods ; Neurodegenerative diseases ; Neurosciences ; Parameter estimation ; Psychosis ; Research Article ; Speech ; Tomography</subject><ispartof>Cognitive neurodynamics, 2016-12, Vol.10 (6), p.495-503</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Springer Science+Business Media Dordrecht 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f3ff97171377e04b6cf234f6fd70fa63516bd86b4948ff15eb06f1139258b0343</citedby><cites>FETCH-LOGICAL-c470t-f3ff97171377e04b6cf234f6fd70fa63516bd86b4948ff15eb06f1139258b0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106459/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918679240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27891198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nasrolahzadeh, Mahda</creatorcontrib><creatorcontrib>Mohammadpoory, Zeynab</creatorcontrib><creatorcontrib>Haddadnia, Javad</creatorcontrib><title>A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals</title><title>Cognitive neurodynamics</title><addtitle>Cogn Neurodyn</addtitle><addtitle>Cogn Neurodyn</addtitle><description>One main challenge for medical investigators is the early diagnosis of Alzheimer’s disease (AD) because it provides greater opportunities for patients to be eligible for more clinical trials. In this study, higher order spectra of human speech signals during AD were explored to analyze and compare the quadratic phase coupling of spontaneous speech signals for healthy and AD subjects using bispectrum and bicoherence. The results showed that the quadratic phase couplings of spontaneous speech signal of persons with Alzheimer’s were reduced compared to healthy subject. However, the speech phase coupled harmonics shifted to the higher frequencies in Alzheimer’s than healthy subjects. In addition, it was shown not only are there significant differences between Alzheimer’s and control subjects in parameters estimated, but also the speech patterns appeared to have fluctuated in both types of spontaneous speech.</description><subject>Alzheimer's disease</subject><subject>Artificial Intelligence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Clinical trials</subject><subject>Cognitive Psychology</subject><subject>Computer Science</subject><subject>Couplings</subject><subject>Diagnosis</subject><subject>Magnetic resonance imaging</subject><subject>Methods</subject><subject>Neurodegenerative diseases</subject><subject>Neurosciences</subject><subject>Parameter estimation</subject><subject>Psychosis</subject><subject>Research Article</subject><subject>Speech</subject><subject>Tomography</subject><issn>1871-4080</issn><issn>1871-4099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kcuKFTEQhoMozjj6AG4k4GY2ralOOpeNcBjGCwy40XXoS6U7Q3fnmPQZmFkJPoWv55OYpsfjBdykQuqrP_XzE_Ic2CtgTL1OAJWCgoEsjGCyYA_IKej8IpgxD493zU7Ik5SuGaukBvGYnJRKGwCjT8m3HZ3DDY50wmUIHXUhUqzjeEs7X_dzSD7R4OhuvBvQTxh_fP2ecithnZA2-ehomOng-wFjEWKHkaY9tkusR4pp8VO9-AxkibQP81LPGA5pRbAdaPL9XI_pKXnkcsFn9_WMfH57-enifXH18d2Hi91V0QrFlsJx54wCBVwpZKKRrSu5cNJ1irla8gpk02nZCCO0c1Bhw6QD4KasdMO44Gfkzaa7PzQTdi3O65p2H_OW8daG2tu_O7MfbB9ubAVMispkgfN7gRi-HLI9O_nU4jhutixoIXjFtYCMvvwHvQ6HuLq1pQEtlSkFyxRsVBtDShHdcRlgdo3YbhHbHLFdI7brzIs_XRwnfmWagXIDUm7NPcbfX_9f9Sf4z7TX</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Nasrolahzadeh, Mahda</creator><creator>Mohammadpoory, Zeynab</creator><creator>Haddadnia, Javad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals</title><author>Nasrolahzadeh, Mahda ; Mohammadpoory, Zeynab ; Haddadnia, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f3ff97171377e04b6cf234f6fd70fa63516bd86b4948ff15eb06f1139258b0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alzheimer's disease</topic><topic>Artificial Intelligence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Clinical trials</topic><topic>Cognitive Psychology</topic><topic>Computer Science</topic><topic>Couplings</topic><topic>Diagnosis</topic><topic>Magnetic resonance imaging</topic><topic>Methods</topic><topic>Neurodegenerative diseases</topic><topic>Neurosciences</topic><topic>Parameter estimation</topic><topic>Psychosis</topic><topic>Research Article</topic><topic>Speech</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasrolahzadeh, Mahda</creatorcontrib><creatorcontrib>Mohammadpoory, Zeynab</creatorcontrib><creatorcontrib>Haddadnia, Javad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cognitive neurodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasrolahzadeh, Mahda</au><au>Mohammadpoory, Zeynab</au><au>Haddadnia, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals</atitle><jtitle>Cognitive neurodynamics</jtitle><stitle>Cogn Neurodyn</stitle><addtitle>Cogn Neurodyn</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>495</spage><epage>503</epage><pages>495-503</pages><issn>1871-4080</issn><eissn>1871-4099</eissn><abstract>One main challenge for medical investigators is the early diagnosis of Alzheimer’s disease (AD) because it provides greater opportunities for patients to be eligible for more clinical trials. In this study, higher order spectra of human speech signals during AD were explored to analyze and compare the quadratic phase coupling of spontaneous speech signals for healthy and AD subjects using bispectrum and bicoherence. The results showed that the quadratic phase couplings of spontaneous speech signal of persons with Alzheimer’s were reduced compared to healthy subject. However, the speech phase coupled harmonics shifted to the higher frequencies in Alzheimer’s than healthy subjects. In addition, it was shown not only are there significant differences between Alzheimer’s and control subjects in parameters estimated, but also the speech patterns appeared to have fluctuated in both types of spontaneous speech.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27891198</pmid><doi>10.1007/s11571-016-9406-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1871-4080 |
ispartof | Cognitive neurodynamics, 2016-12, Vol.10 (6), p.495-503 |
issn | 1871-4080 1871-4099 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5106459 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Alzheimer's disease Artificial Intelligence Biochemistry Biomedical and Life Sciences Biomedicine Clinical trials Cognitive Psychology Computer Science Couplings Diagnosis Magnetic resonance imaging Methods Neurodegenerative diseases Neurosciences Parameter estimation Psychosis Research Article Speech Tomography |
title | A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20for%20early%20diagnosis%20of%20Alzheimer%E2%80%99s%20disease%20based%20on%20higher-order%20spectral%20estimation%20of%20spontaneous%20speech%20signals&rft.jtitle=Cognitive%20neurodynamics&rft.au=Nasrolahzadeh,%20Mahda&rft.date=2016-12-01&rft.volume=10&rft.issue=6&rft.spage=495&rft.epage=503&rft.pages=495-503&rft.issn=1871-4080&rft.eissn=1871-4099&rft_id=info:doi/10.1007/s11571-016-9406-0&rft_dat=%3Cproquest_pubme%3E1844353841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918679240&rft_id=info:pmid/27891198&rfr_iscdi=true |