Multispectrum analysis of the oxygen A-band

Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2017-01, Vol.186, p.118-138
Hauptverfasser: Drouin, Brian J., Benner, D. Chris, Brown, Linda R., Cich, Matthew J., Crawford, Timothy J., Devi, V. Malathy, Guillaume, Alexander, Hodges, Joseph T., Mlawer, Eli J., Robichaud, David J., Oyafuso, Fabiano, Payne, Vivienne H., Sung, Keeyoon, Wishnow, Edward H., Yu, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 118
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 186
creator Drouin, Brian J.
Benner, D. Chris
Brown, Linda R.
Cich, Matthew J.
Crawford, Timothy J.
Devi, V. Malathy
Guillaume, Alexander
Hodges, Joseph T.
Mlawer, Eli J.
Robichaud, David J.
Oyafuso, Fabiano
Payne, Vivienne H.
Sung, Keeyoon
Wishnow, Edward H.
Yu, Shanshan
description Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database. •Comprehensive study of resonant and non-resonant oxygen absorption in the NIR.•Multispectrum analysis combining Fourier Transform and Cavity Ringdown Spectra.•Speed dependence of lineshape determined.•Temperature dependences of lineshape parameters obtained.•Modified models for collision induced absorption and collisional relaxation.
doi_str_mv 10.1016/j.jqsrt.2016.03.037
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5103325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407316301108</els_id><sourcerecordid>1839122762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d8bea52d6d6d61c0195e080cb5eeb381c849bac8418abd19b1c8252f3f2a91593</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFSWh2Sb5BYFicioUbzWSZcuHBkLoRyCll-QsZHmc1eKVNpIcuv--cjcNySVokJD05r15M4ScAV0ChfrLerl-iCEtWb4sKc_RvCMLkE1bAhfsgCwoZaysaMOPyIcY15RSzqF-T45YIytaiWpBPv-axmTjFk0K06bQTo-7aGPhhyKtsPB_dvfoisuy064_IYeDHiOePp3H5O77t9urn-XN7x_XV5c3palkncpedqgF6-t5gaHQCqSSmk4gdlyCkVXb6byD1F0PbZdfmGADH5huQbT8mFzsebdTt8HeoEtBj2ob7EaHnfLaqtc_zq7UvX9UArJBJjLB-Z7Ax2RVNDahWRnvXHapIPegrWeVT08qwT9MGJPa2GhwHLVDP0UFkrfAWFOzDOV7qAk-xoDDcy1A1TwLtVb_ZqHmWSjKczQ56-NLG885_5ufAV_3AMzNfLQY5lLRGextmCvtvX1T4C-X55uy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839122762</pqid></control><display><type>article</type><title>Multispectrum analysis of the oxygen A-band</title><source>Access via ScienceDirect (Elsevier)</source><creator>Drouin, Brian J. ; Benner, D. Chris ; Brown, Linda R. ; Cich, Matthew J. ; Crawford, Timothy J. ; Devi, V. Malathy ; Guillaume, Alexander ; Hodges, Joseph T. ; Mlawer, Eli J. ; Robichaud, David J. ; Oyafuso, Fabiano ; Payne, Vivienne H. ; Sung, Keeyoon ; Wishnow, Edward H. ; Yu, Shanshan</creator><creatorcontrib>Drouin, Brian J. ; Benner, D. Chris ; Brown, Linda R. ; Cich, Matthew J. ; Crawford, Timothy J. ; Devi, V. Malathy ; Guillaume, Alexander ; Hodges, Joseph T. ; Mlawer, Eli J. ; Robichaud, David J. ; Oyafuso, Fabiano ; Payne, Vivienne H. ; Sung, Keeyoon ; Wishnow, Edward H. ; Yu, Shanshan ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database. •Comprehensive study of resonant and non-resonant oxygen absorption in the NIR.•Multispectrum analysis combining Fourier Transform and Cavity Ringdown Spectra.•Speed dependence of lineshape determined.•Temperature dependences of lineshape parameters obtained.•Modified models for collision induced absorption and collisional relaxation.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2016.03.037</identifier><identifier>PMID: 27840454</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Atmospheric absorption ; Collision-induced absorption ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Multispectrum fitting ; Oxygen ; Spectral lineshapes</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2017-01, Vol.186, p.118-138</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d8bea52d6d6d61c0195e080cb5eeb381c849bac8418abd19b1c8252f3f2a91593</citedby><cites>FETCH-LOGICAL-c486t-d8bea52d6d6d61c0195e080cb5eeb381c849bac8418abd19b1c8252f3f2a91593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jqsrt.2016.03.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27840454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1331969$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Drouin, Brian J.</creatorcontrib><creatorcontrib>Benner, D. Chris</creatorcontrib><creatorcontrib>Brown, Linda R.</creatorcontrib><creatorcontrib>Cich, Matthew J.</creatorcontrib><creatorcontrib>Crawford, Timothy J.</creatorcontrib><creatorcontrib>Devi, V. Malathy</creatorcontrib><creatorcontrib>Guillaume, Alexander</creatorcontrib><creatorcontrib>Hodges, Joseph T.</creatorcontrib><creatorcontrib>Mlawer, Eli J.</creatorcontrib><creatorcontrib>Robichaud, David J.</creatorcontrib><creatorcontrib>Oyafuso, Fabiano</creatorcontrib><creatorcontrib>Payne, Vivienne H.</creatorcontrib><creatorcontrib>Sung, Keeyoon</creatorcontrib><creatorcontrib>Wishnow, Edward H.</creatorcontrib><creatorcontrib>Yu, Shanshan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Multispectrum analysis of the oxygen A-band</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><addtitle>J Quant Spectrosc Radiat Transf</addtitle><description>Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database. •Comprehensive study of resonant and non-resonant oxygen absorption in the NIR.•Multispectrum analysis combining Fourier Transform and Cavity Ringdown Spectra.•Speed dependence of lineshape determined.•Temperature dependences of lineshape parameters obtained.•Modified models for collision induced absorption and collisional relaxation.</description><subject>Atmospheric absorption</subject><subject>Collision-induced absorption</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Multispectrum fitting</subject><subject>Oxygen</subject><subject>Spectral lineshapes</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFSWh2Sb5BYFicioUbzWSZcuHBkLoRyCll-QsZHmc1eKVNpIcuv--cjcNySVokJD05r15M4ScAV0ChfrLerl-iCEtWb4sKc_RvCMLkE1bAhfsgCwoZaysaMOPyIcY15RSzqF-T45YIytaiWpBPv-axmTjFk0K06bQTo-7aGPhhyKtsPB_dvfoisuy064_IYeDHiOePp3H5O77t9urn-XN7x_XV5c3palkncpedqgF6-t5gaHQCqSSmk4gdlyCkVXb6byD1F0PbZdfmGADH5huQbT8mFzsebdTt8HeoEtBj2ob7EaHnfLaqtc_zq7UvX9UArJBJjLB-Z7Ax2RVNDahWRnvXHapIPegrWeVT08qwT9MGJPa2GhwHLVDP0UFkrfAWFOzDOV7qAk-xoDDcy1A1TwLtVb_ZqHmWSjKczQ56-NLG885_5ufAV_3AMzNfLQY5lLRGextmCvtvX1T4C-X55uy</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Drouin, Brian J.</creator><creator>Benner, D. Chris</creator><creator>Brown, Linda R.</creator><creator>Cich, Matthew J.</creator><creator>Crawford, Timothy J.</creator><creator>Devi, V. Malathy</creator><creator>Guillaume, Alexander</creator><creator>Hodges, Joseph T.</creator><creator>Mlawer, Eli J.</creator><creator>Robichaud, David J.</creator><creator>Oyafuso, Fabiano</creator><creator>Payne, Vivienne H.</creator><creator>Sung, Keeyoon</creator><creator>Wishnow, Edward H.</creator><creator>Yu, Shanshan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20170101</creationdate><title>Multispectrum analysis of the oxygen A-band</title><author>Drouin, Brian J. ; Benner, D. Chris ; Brown, Linda R. ; Cich, Matthew J. ; Crawford, Timothy J. ; Devi, V. Malathy ; Guillaume, Alexander ; Hodges, Joseph T. ; Mlawer, Eli J. ; Robichaud, David J. ; Oyafuso, Fabiano ; Payne, Vivienne H. ; Sung, Keeyoon ; Wishnow, Edward H. ; Yu, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d8bea52d6d6d61c0195e080cb5eeb381c849bac8418abd19b1c8252f3f2a91593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric absorption</topic><topic>Collision-induced absorption</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Multispectrum fitting</topic><topic>Oxygen</topic><topic>Spectral lineshapes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drouin, Brian J.</creatorcontrib><creatorcontrib>Benner, D. Chris</creatorcontrib><creatorcontrib>Brown, Linda R.</creatorcontrib><creatorcontrib>Cich, Matthew J.</creatorcontrib><creatorcontrib>Crawford, Timothy J.</creatorcontrib><creatorcontrib>Devi, V. Malathy</creatorcontrib><creatorcontrib>Guillaume, Alexander</creatorcontrib><creatorcontrib>Hodges, Joseph T.</creatorcontrib><creatorcontrib>Mlawer, Eli J.</creatorcontrib><creatorcontrib>Robichaud, David J.</creatorcontrib><creatorcontrib>Oyafuso, Fabiano</creatorcontrib><creatorcontrib>Payne, Vivienne H.</creatorcontrib><creatorcontrib>Sung, Keeyoon</creatorcontrib><creatorcontrib>Wishnow, Edward H.</creatorcontrib><creatorcontrib>Yu, Shanshan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drouin, Brian J.</au><au>Benner, D. Chris</au><au>Brown, Linda R.</au><au>Cich, Matthew J.</au><au>Crawford, Timothy J.</au><au>Devi, V. Malathy</au><au>Guillaume, Alexander</au><au>Hodges, Joseph T.</au><au>Mlawer, Eli J.</au><au>Robichaud, David J.</au><au>Oyafuso, Fabiano</au><au>Payne, Vivienne H.</au><au>Sung, Keeyoon</au><au>Wishnow, Edward H.</au><au>Yu, Shanshan</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispectrum analysis of the oxygen A-band</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><addtitle>J Quant Spectrosc Radiat Transf</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>186</volume><spage>118</spage><epage>138</epage><pages>118-138</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database. •Comprehensive study of resonant and non-resonant oxygen absorption in the NIR.•Multispectrum analysis combining Fourier Transform and Cavity Ringdown Spectra.•Speed dependence of lineshape determined.•Temperature dependences of lineshape parameters obtained.•Modified models for collision induced absorption and collisional relaxation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27840454</pmid><doi>10.1016/j.jqsrt.2016.03.037</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2017-01, Vol.186, p.118-138
issn 0022-4073
1879-1352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5103325
source Access via ScienceDirect (Elsevier)
subjects Atmospheric absorption
Collision-induced absorption
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Multispectrum fitting
Oxygen
Spectral lineshapes
title Multispectrum analysis of the oxygen A-band
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispectrum%20analysis%20of%20the%20oxygen%20A-band&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Drouin,%20Brian%20J.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-01-01&rft.volume=186&rft.spage=118&rft.epage=138&rft.pages=118-138&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2016.03.037&rft_dat=%3Cproquest_pubme%3E1839122762%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839122762&rft_id=info:pmid/27840454&rft_els_id=S0022407316301108&rfr_iscdi=true