Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles

Summary Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2016-12, Vol.14 (12), p.2288-2299
Hauptverfasser: Belval, Lorène, Hemmer, Caroline, Sauter, Claude, Reinbold, Catherine, Fauny, Jean‐Daniel, Berthold, François, Ackerer, Léa, Schmitt‐Keichinger, Corinne, Lemaire, Olivier, Demangeat, Gérard, Ritzenthaler, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2299
container_issue 12
container_start_page 2288
container_title Plant biotechnology journal
container_volume 14
creator Belval, Lorène
Hemmer, Caroline
Sauter, Claude
Reinbold, Catherine
Fauny, Jean‐Daniel
Berthold, François
Ackerer, Léa
Schmitt‐Keichinger, Corinne
Lemaire, Olivier
Demangeat, Gérard
Ritzenthaler, Christophe
description Summary Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self‐assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N‐ and C‐terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant‐based production of nucleic acid‐free VLPs. Remarkably, expression of N‐ or C‐terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.
doi_str_mv 10.1111/pbi.12582
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5103221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733184873</galeid><sourcerecordid>A733184873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6102-fc0655ff0f7cf602ebb0041e71390f0617ea65c4332b3ce757c2e39daff5efee3</originalsourceid><addsrcrecordid>eNqNks1uEzEQx1cIREvgwAuglbjAIam_vbkghfLRSpHgAGfL64wTF8de7Gyq3HgEnpEnwUtCoBUI7MOMxr_5jz2eqnqM0QSXdda1boIJb8id6hQzIcdScHL36DN2Uj3I-QohggUX96sTIrFsKGOnlX7lcuf1ro62vl5FD3WX4gZcyHUMtQsBUq3Doo79pni5T1YbyAO9TLqDrQtQWx08aFtvXerzty9fvftUZHTaOOMhP6zuWe0zPDrYUfXxzesP5xfj-bu3l-ez-dgIjMjYGiQ4txZZaaxABNoWIYZBYjpFFgksQQtuGKWkpQYkl4YAnS60tRwsAB1VL_a6Xd-uYWEgbJL2qkturdNORe3UzZPgVmoZt4pjRAnBReD5XmB1K-1iNldDrLRPMkzJdmCfHYql-LmHvFFrlw14rwPEPiuCOG0a1lDxTxQ3HMmGSUz-AyVCNEwIXtCnt9Cr2KdQGqwIaaaCSIHQL2qpPSgXbCwvN4OomklKcblhMaNq8geq7AWsnYkBrCvxGwmHTpkUc05gj-3CSA0TqcpEqh8TWdgnv3_Lkfw5ggU42wPXpcru70rq_cvLveR3F9bpgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289627600</pqid></control><display><type>article</type><title>Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles</title><source>Wiley-Blackwell Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Belval, Lorène ; Hemmer, Caroline ; Sauter, Claude ; Reinbold, Catherine ; Fauny, Jean‐Daniel ; Berthold, François ; Ackerer, Léa ; Schmitt‐Keichinger, Corinne ; Lemaire, Olivier ; Demangeat, Gérard ; Ritzenthaler, Christophe</creator><creatorcontrib>Belval, Lorène ; Hemmer, Caroline ; Sauter, Claude ; Reinbold, Catherine ; Fauny, Jean‐Daniel ; Berthold, François ; Ackerer, Léa ; Schmitt‐Keichinger, Corinne ; Lemaire, Olivier ; Demangeat, Gérard ; Ritzenthaler, Christophe</creatorcontrib><description>Summary Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self‐assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N‐ and C‐terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant‐based production of nucleic acid‐free VLPs. Remarkably, expression of N‐ or C‐terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12582</identifier><identifier>PMID: 27178344</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Assembly ; bioactive compounds ; Biochemistry, Molecular Biology ; Biotechnology ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; Cellular Biology ; coat proteins ; Exposure ; Fluorescence ; fluorescent proteins ; Genetic engineering ; Genetic modification ; Genetically modified organisms ; Genomes ; Grapevine fanleaf virus ; hybrids ; Immunoglobulins ; Life Sciences ; Mass spectrometry ; Microscopy ; Molecular biology ; nanocarrier ; nanocarriers ; Nanoparticles ; Neomycin ; Nepovirus ; Nepovirus - genetics ; Nepovirus - physiology ; Nucleic acids ; Organic chemistry ; Peptides ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Proteins ; Recombinant proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scientific imaging ; Secoviridae ; structural proteins ; Vegetal Biology ; Viral proteins ; virion ; virus ; virus like particles ; Viruses ; Vitaceae ; Vitis - virology</subject><ispartof>Plant biotechnology journal, 2016-12, Vol.14 (12), p.2288-2299</ispartof><rights>2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley Sons Ltd.</rights><rights>2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6102-fc0655ff0f7cf602ebb0041e71390f0617ea65c4332b3ce757c2e39daff5efee3</citedby><cites>FETCH-LOGICAL-c6102-fc0655ff0f7cf602ebb0041e71390f0617ea65c4332b3ce757c2e39daff5efee3</cites><orcidid>0000-0003-1642-0221 ; 0000-0002-8766-287X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12582$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12582$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27178344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02174132$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belval, Lorène</creatorcontrib><creatorcontrib>Hemmer, Caroline</creatorcontrib><creatorcontrib>Sauter, Claude</creatorcontrib><creatorcontrib>Reinbold, Catherine</creatorcontrib><creatorcontrib>Fauny, Jean‐Daniel</creatorcontrib><creatorcontrib>Berthold, François</creatorcontrib><creatorcontrib>Ackerer, Léa</creatorcontrib><creatorcontrib>Schmitt‐Keichinger, Corinne</creatorcontrib><creatorcontrib>Lemaire, Olivier</creatorcontrib><creatorcontrib>Demangeat, Gérard</creatorcontrib><creatorcontrib>Ritzenthaler, Christophe</creatorcontrib><title>Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self‐assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N‐ and C‐terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant‐based production of nucleic acid‐free VLPs. Remarkably, expression of N‐ or C‐terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.</description><subject>Assembly</subject><subject>bioactive compounds</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biotechnology</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>Cellular Biology</subject><subject>coat proteins</subject><subject>Exposure</subject><subject>Fluorescence</subject><subject>fluorescent proteins</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Genetically modified organisms</subject><subject>Genomes</subject><subject>Grapevine fanleaf virus</subject><subject>hybrids</subject><subject>Immunoglobulins</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Microscopy</subject><subject>Molecular biology</subject><subject>nanocarrier</subject><subject>nanocarriers</subject><subject>Nanoparticles</subject><subject>Neomycin</subject><subject>Nepovirus</subject><subject>Nepovirus - genetics</subject><subject>Nepovirus - physiology</subject><subject>Nucleic acids</subject><subject>Organic chemistry</subject><subject>Peptides</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Recombinant proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Secoviridae</subject><subject>structural proteins</subject><subject>Vegetal Biology</subject><subject>Viral proteins</subject><subject>virion</subject><subject>virus</subject><subject>virus like particles</subject><subject>Viruses</subject><subject>Vitaceae</subject><subject>Vitis - virology</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1uEzEQx1cIREvgwAuglbjAIam_vbkghfLRSpHgAGfL64wTF8de7Gyq3HgEnpEnwUtCoBUI7MOMxr_5jz2eqnqM0QSXdda1boIJb8id6hQzIcdScHL36DN2Uj3I-QohggUX96sTIrFsKGOnlX7lcuf1ro62vl5FD3WX4gZcyHUMtQsBUq3Doo79pni5T1YbyAO9TLqDrQtQWx08aFtvXerzty9fvftUZHTaOOMhP6zuWe0zPDrYUfXxzesP5xfj-bu3l-ez-dgIjMjYGiQ4txZZaaxABNoWIYZBYjpFFgksQQtuGKWkpQYkl4YAnS60tRwsAB1VL_a6Xd-uYWEgbJL2qkturdNORe3UzZPgVmoZt4pjRAnBReD5XmB1K-1iNldDrLRPMkzJdmCfHYql-LmHvFFrlw14rwPEPiuCOG0a1lDxTxQ3HMmGSUz-AyVCNEwIXtCnt9Cr2KdQGqwIaaaCSIHQL2qpPSgXbCwvN4OomklKcblhMaNq8geq7AWsnYkBrCvxGwmHTpkUc05gj-3CSA0TqcpEqh8TWdgnv3_Lkfw5ggU42wPXpcru70rq_cvLveR3F9bpgg</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Belval, Lorène</creator><creator>Hemmer, Caroline</creator><creator>Sauter, Claude</creator><creator>Reinbold, Catherine</creator><creator>Fauny, Jean‐Daniel</creator><creator>Berthold, François</creator><creator>Ackerer, Léa</creator><creator>Schmitt‐Keichinger, Corinne</creator><creator>Lemaire, Olivier</creator><creator>Demangeat, Gérard</creator><creator>Ritzenthaler, Christophe</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1642-0221</orcidid><orcidid>https://orcid.org/0000-0002-8766-287X</orcidid></search><sort><creationdate>201612</creationdate><title>Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles</title><author>Belval, Lorène ; Hemmer, Caroline ; Sauter, Claude ; Reinbold, Catherine ; Fauny, Jean‐Daniel ; Berthold, François ; Ackerer, Léa ; Schmitt‐Keichinger, Corinne ; Lemaire, Olivier ; Demangeat, Gérard ; Ritzenthaler, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6102-fc0655ff0f7cf602ebb0041e71390f0617ea65c4332b3ce757c2e39daff5efee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Assembly</topic><topic>bioactive compounds</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biotechnology</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>Cellular Biology</topic><topic>coat proteins</topic><topic>Exposure</topic><topic>Fluorescence</topic><topic>fluorescent proteins</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Genetically modified organisms</topic><topic>Genomes</topic><topic>Grapevine fanleaf virus</topic><topic>hybrids</topic><topic>Immunoglobulins</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Microscopy</topic><topic>Molecular biology</topic><topic>nanocarrier</topic><topic>nanocarriers</topic><topic>Nanoparticles</topic><topic>Neomycin</topic><topic>Nepovirus</topic><topic>Nepovirus - genetics</topic><topic>Nepovirus - physiology</topic><topic>Nucleic acids</topic><topic>Organic chemistry</topic><topic>Peptides</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Recombinant proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Secoviridae</topic><topic>structural proteins</topic><topic>Vegetal Biology</topic><topic>Viral proteins</topic><topic>virion</topic><topic>virus</topic><topic>virus like particles</topic><topic>Viruses</topic><topic>Vitaceae</topic><topic>Vitis - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belval, Lorène</creatorcontrib><creatorcontrib>Hemmer, Caroline</creatorcontrib><creatorcontrib>Sauter, Claude</creatorcontrib><creatorcontrib>Reinbold, Catherine</creatorcontrib><creatorcontrib>Fauny, Jean‐Daniel</creatorcontrib><creatorcontrib>Berthold, François</creatorcontrib><creatorcontrib>Ackerer, Léa</creatorcontrib><creatorcontrib>Schmitt‐Keichinger, Corinne</creatorcontrib><creatorcontrib>Lemaire, Olivier</creatorcontrib><creatorcontrib>Demangeat, Gérard</creatorcontrib><creatorcontrib>Ritzenthaler, Christophe</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belval, Lorène</au><au>Hemmer, Caroline</au><au>Sauter, Claude</au><au>Reinbold, Catherine</au><au>Fauny, Jean‐Daniel</au><au>Berthold, François</au><au>Ackerer, Léa</au><au>Schmitt‐Keichinger, Corinne</au><au>Lemaire, Olivier</au><au>Demangeat, Gérard</au><au>Ritzenthaler, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2016-12</date><risdate>2016</risdate><volume>14</volume><issue>12</issue><spage>2288</spage><epage>2299</epage><pages>2288-2299</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self‐assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N‐ and C‐terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant‐based production of nucleic acid‐free VLPs. Remarkably, expression of N‐ or C‐terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27178344</pmid><doi>10.1111/pbi.12582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1642-0221</orcidid><orcidid>https://orcid.org/0000-0002-8766-287X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2016-12, Vol.14 (12), p.2288-2299
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5103221
source Wiley-Blackwell Open Access Collection; MEDLINE; Wiley Online Library; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Assembly
bioactive compounds
Biochemistry, Molecular Biology
Biotechnology
Capsid Proteins - genetics
Capsid Proteins - metabolism
Cellular Biology
coat proteins
Exposure
Fluorescence
fluorescent proteins
Genetic engineering
Genetic modification
Genetically modified organisms
Genomes
Grapevine fanleaf virus
hybrids
Immunoglobulins
Life Sciences
Mass spectrometry
Microscopy
Molecular biology
nanocarrier
nanocarriers
Nanoparticles
Neomycin
Nepovirus
Nepovirus - genetics
Nepovirus - physiology
Nucleic acids
Organic chemistry
Peptides
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
Recombinant proteins
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Scientific imaging
Secoviridae
structural proteins
Vegetal Biology
Viral proteins
virion
virus
virus like particles
Viruses
Vitaceae
Vitis - virology
title Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus‐like particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Display%20of%20whole%20proteins%20on%20inner%20and%20outer%20surfaces%20of%20grapevine%20fanleaf%20virus%E2%80%90like%20particles&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Belval,%20Lor%C3%A8ne&rft.date=2016-12&rft.volume=14&rft.issue=12&rft.spage=2288&rft.epage=2299&rft.pages=2288-2299&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12582&rft_dat=%3Cgale_pubme%3EA733184873%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289627600&rft_id=info:pmid/27178344&rft_galeid=A733184873&rfr_iscdi=true